分析 an+1=an+$\frac{1}{2016}$an2,a1=$\frac{1}{2}$,可得an+1>an>0.可得:$\frac{1}{{a}_{n}+2016}$=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$,可得$\frac{1}{{a}_{1}+2016}$+$\frac{1}{{a}_{2}+2016}$+…+$\frac{1}{{a}_{n}+2016}$=2-$\frac{1}{{a}_{n+1}}$,通过放缩可得:2-$\frac{1}{{a}_{n+1}}$<$\frac{n}{{a}_{1}+2016}$,当n=2016时,得a2017<1.2-$\frac{1}{{a}_{n+1}}$>$\frac{n}{{a}_{n}+2016}$.当n=2017时,得
a2018>1.即可得出.
解答 解:∵an+1=an+$\frac{1}{2016}$an2,a1=$\frac{1}{2}$,∴an+1>an>0.
∴$\frac{1}{{a}_{n}+2016}$=$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$,
∴$\frac{1}{{a}_{1}+2016}$+$\frac{1}{{a}_{2}+2016}$+…+$\frac{1}{{a}_{n}+2016}$=$\frac{1}{{a}_{1}}-\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{2}}$-$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$-$\frac{1}{{a}_{n+1}}$=2-$\frac{1}{{a}_{n+1}}$,
∴2-$\frac{1}{{a}_{n+1}}$<$\frac{n}{{a}_{1}+2016}$.
当n=2016时,2-$\frac{1}{{a}_{2017}}$<$\frac{2016}{\frac{1}{2}+2016}$<1,得a2017<1.
2-$\frac{1}{{a}_{n+1}}$>$\frac{n}{{a}_{n}+2016}$.
当n=2017时,2-$\frac{1}{{a}_{2018}}$>$\frac{2017}{{a}_{2017}+2016}$>1,得a2018>1.
因此存在n,使得an>1,且n的最小值为2018.
故答案为:2018.
点评 本题考查了数列递推关系、放缩方法、裂项求和方法,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | ${x^2}-\frac{y^2}{3}=1$ | B. | ${x^2}-\frac{y^2}{2}=1$ | C. | ${x^2}-\frac{y^2}{5}=1$ | D. | ${x^2}-\frac{y^2}{6}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 3 | C. | 8 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\frac{{\sqrt{6}}}{3}$ | D. | $\frac{{2\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{3π}{4}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com