| A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{3π}{4}$ | D. | $\frac{5π}{6}$ |
分析 由题意画出图形,利用抛物线定义结合已知可得|AF|+|BF|=$\frac{2\sqrt{3}}{3}$|AB|.再由余弦定理,结合基本不等式即可求出∠AFB的最大值.
解答 解:如图,![]()
∵y1+y2+2=$\frac{2\sqrt{3}}{3}$|AB|,又|AF|+|BF|=y1+y2+2,
∴|AF|+|BF|=$\frac{2\sqrt{3}}{3}$|AB|.
在△AFB中,由余弦定理得:cos∠AFB=$\frac{|AF{|}^{2}+|BF{|}^{2}-|AB{|}^{2}}{2|AF|•|BF|}$=$\frac{(|AF|+|BF|)^{2}-2|AF|•|BF|-|AB{|}^{2}}{2|AF|•|BF|}$
=$\frac{\frac{4}{3}|AB{|}^{2}-|AB{|}^{2}}{2|AF|•|BF|}-1$=$\frac{\frac{1}{3}|AB{|}^{2}}{2|AF|•|BF|}-1$.
又|AF|+|BF|=$\frac{2\sqrt{3}}{3}$|AB|≥2$\sqrt{|AF|•|BF|}$,
∴|AF|•|BF|≤$\frac{1}{3}|AB{|}^{2}$.
∴cos∠AFB≥$\frac{\frac{1}{3}|AB{|}^{2}}{2×\frac{1}{3}|AB{|}^{2}}-1=-\frac{1}{2}$,
∴∠AFB的最大值为$\frac{2π}{3}$,
故选:B.
点评 本题考查抛物线的定义,考查余弦定理、基本不等式的运用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $[{\frac{{2\sqrt{5}}}{5},2}]∪[{\frac{{6\sqrt{5}}}{5},6}]$ | B. | $[{\frac{{2\sqrt{5}}}{5},6}]$ | C. | $[{\frac{{2\sqrt{5}}}{5},2}]∪[{4,6}]$ | D. | $\left\{2\right\}∪[{\frac{{6\sqrt{5}}}{5},6}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 5 | C. | 25 | D. | 45 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com