精英家教网 > 高中数学 > 题目详情
9.若$\frac{1+ai}{2+i}=1+2i$,则a=(  )
A.-5-iB.-5+iC.5-iD.5+i

分析 利用复数的运算法则、共轭复数的定义即可得出.

解答 解:∵$\frac{1+ai}{2+i}=1+2i$,∴1+ai=(2+i)(1+2i)=5i,
∴a=$\frac{5i-1}{i}$=$\frac{-i(5i-1)}{-i•i}$=5+i.
故选:D.

点评 本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知抛物线x2=4y的焦点为F,设A(x1,y1),B(x2,y2)是抛物线上的两个动点,如满足y1+y2+2=$\frac{2\sqrt{3}}{3}$|AB|,则∠AFB的最大值(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=|sinx|(x≥0)的图象与过原点的直线恰有三个交点,设三个交点中横坐标的最大值为θ,则$\frac{{(1+{θ^2})sin2θ}}{θ}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}满足:a1=1,nan+1-(n+1)an=1(n∈N+
(1)求数列{an}的通项公式;
(2)若${b_n}=\frac{{{a_n}+1}}{2}•{(\frac{8}{9})^n}(n∈{N_+})$,求数列{bn}的最大项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若不等式2xln x≥-x2+ax-3恒成立,则实数a的取值范围是(  )
A.(-∞,0)B.(-∞,4]C.(0,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若变量x,y满足条件$\left\{\begin{array}{l}x-y-1≤0\\ x+y-6≤0\\ x-1≥0\end{array}\right.$,则xy的取值范围是(  )
A.[0,5]B.$[{5,\frac{35}{4}}]$C.$[{0,\frac{35}{4}}]$D.[0,9]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{lnx}{x+a}$(a∈R),曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直.
(Ⅰ)试比较20162017与20172016的大小,并说明理由;
(Ⅱ)若函数g(x)=f(x)-k有两个不同的零点x1,x2,证明:x1•x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知正三棱柱ABC-A1B1C1所有棱长均为2,D、E分别是BC、BB1中点.
(1)证明:C1E⊥面ADC1
(2)求二面角A1-C1D-A的余弦值;
(3)若线段AA1上存在一点P,满足直线CE和直线C1P异面直线成角的余弦值是$\frac{\sqrt{2}}{5}$,求A1P长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=3,(2$\overrightarrow{a}$-3$\overrightarrow{b}$)•(2$\overrightarrow{a}$+$\overrightarrow{b}$)=61.
(1)求向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角θ;    
(2)求|$\overrightarrow{a}$+2$\overrightarrow{b}$|.

查看答案和解析>>

同步练习册答案