分析 (1)由$\frac{{{a_{n+1}}}}{n+1}-\frac{a_n}{n}=\frac{1}{n}-\frac{1}{n+1}$.采用累加法即可求得数列{an}的通项公式;
(2)由(1)可知bn=n×($\frac{8}{9}$)n,n∈N+,根据导数与函数单调性的关系,即可求得数列{bn}的最大项.
解答 解:(1)已知式可化为$\frac{{{a_{n+1}}}}{n+1}-\frac{a_n}{n}=\frac{1}{n}-\frac{1}{n+1}$.
则当n≥2时,$\frac{{a}_{n}}{n}$-$\frac{{a}_{n-1}}{n-1}$=$\frac{1}{n-1}$-$\frac{1}{n}$,
$\frac{{a}_{n-1}}{n-1}$-$\frac{{a}_{n}}{n-2}$=$\frac{1}{n-2}$-$\frac{1}{n-1}$,
…
$\frac{{a}_{2}}{2}$-$\frac{{a}_{1}}{1}$=1-$\frac{1}{2}$,
以上各式相加:$\frac{{a}_{n}}{n}$-$\frac{{a}_{1}}{1}$=1-$\frac{1}{n}$,
整理得:an=2n-1,
当n=1时,显然成立,
∴数列{an}的通项公式an=2n-1;(n∈N+)
(2)由${b_n}=\frac{{{a_n}+1}}{2}•{(\frac{8}{9})^n}(n∈{N_+})$,则bn=n×($\frac{8}{9}$)n,n∈N+,
设g(x)=x($\frac{8}{9}$)x,x>0,求导g′(x)=($\frac{8}{9}$)x+x($\frac{8}{9}$)xln($\frac{8}{9}$),
令g′(x)=0,解得:x=-$\frac{1}{ln\frac{8}{9}}$,8<-$\frac{1}{ln\frac{8}{9}}$<9,
由g(x)在(0,-$\frac{1}{ln\frac{8}{9}}$)单调递增,在(-$\frac{1}{ln\frac{8}{9}}$,+∞)单调递减,
且${b_8}={b_9}=\frac{8^9}{9^8}$,
∴数列{bn}的单调性得最大项为${b_8}={b_9}=\frac{8^9}{9^8}$…(12分).
点评 本题考查数列与导数的综合应用,考查导数与函数单调性的关系,数列通项公式的求法,考查“累加法”的应用,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 平均车速超过100km/h人数 | 平均车速不超过100km/h人数 | 合计 | |
| 男性驾驶人数 | 45 | 10 | 55 |
| 女性驾驶人数 | 25 | 20 | 45 |
| 合计 | 70 | 30 | 100 |
| P(k2≥k0) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x<y<z | B. | y<z<x | C. | z<x<y | D. | z<y<x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 组号 | 第一组 | 第二组 | 第二组 | 第四组 |
| 分组 | [70,80) | [80,90) | [90,100) | [100,110) |
| 频数 | 6 | 4 | 22 | 20 |
| 频率 | 0.06 | 0.04 | 0.22 | 0.20 |
| 组号 | 第五组 | 第六组 | 第七组 | 第八组 |
| 分组 | [110,120) | [120,130) | [130,140) | [140,150] |
| 频数 | 18 | a | 10 | 5 |
| 频率 | b | 0.15 | 0.10 | 0.05 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{6}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com