精英家教网 > 高中数学 > 题目详情
6.在△ABC中,角A,B,C的对边分别为a,b,c,满足$\sqrt{3}a=b(sinC+\sqrt{3}cosC)$.
(1)求∠ABC;
(2)若$∠A=\frac{π}{3}$,D为△ABC外一点,DB=2,DC=1,求四边形ABDC面积的最大值.

分析 (1)利用两角和的正弦函数公式及三角形内角和定理化简已知可得tanB=$\sqrt{3}$,由B∈(0,π),即可求得B的值.
(2)由已知利用余弦定理可求BC2=5-4cosD.利用三角形面积公式可求S△ABC=$\frac{5\sqrt{3}}{4}$-$\sqrt{3}$cosD,
S△BDC=sinD,根据三角函数恒等变换的应用可得S四边形ABDC=$\frac{5\sqrt{3}}{4}$+2sin(D-$\frac{π}{3}$),利用正弦函数的图象和性质可求其最大值.

解答 (本题满分为12分)
解:(1)∵$\sqrt{3}a=b(sinC+\sqrt{3}cosC)$.
∴由正弦定理可得:$\sqrt{3}$sinA=sinBsinC+$\sqrt{3}$sinBcosC,…(2分)
∵sinA=sin(B+C)=sinBcosC+sinCcosB,
∴可得:$\sqrt{3}$sinBcosC+$\sqrt{3}$sinCcosB=sinBsinC+$\sqrt{3}$sinBcosC,
可得:$\sqrt{3}$sinCcosB=sinBsinC,
∵sinC≠0,解得sinB=$\sqrt{3}$cosB,即:tanB=$\sqrt{3}$,
∴由B∈(0,π),可得:B=$\frac{π}{3}$. …(6分)
(2)在△BCD中,DB=2,DC=1,
∴BC2=12+22-2×1×2×cosD=5-4cosD. …(7分)
又$∠A=\frac{π}{3}$,由(1)可知△ABC为等边三角形,…(8分)
∴S△ABC=$\frac{\sqrt{3}}{4}$BC2=$\frac{\sqrt{3}}{4}$×(5-4cosD)=$\frac{5\sqrt{3}}{4}$-$\sqrt{3}$cosD,…(9分)
又∵S△BDC=$\frac{1}{2}×BD×CD×sinD$=sinD,…(10分)
∴S四边形ABDC=$\frac{5\sqrt{3}}{4}$-$\sqrt{3}$cosD+sinD=$\frac{5\sqrt{3}}{4}$+2sin(D-$\frac{π}{3}$).    …(11分)
∴当D=$\frac{5π}{6}$时,四边形ABDC的面积有最大值,最大值为$\frac{5\sqrt{3}}{4}$+2.…(12分)

点评 本题主要考查了正弦定理、余弦定理、三角形面积公式及三角恒等变换等基础知识的应用,考查了运算求解能力,考查了化归与转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.随着社会发展,襄阳市在一天的上下班时段也出现了堵车严重的现象.交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念.记交通指数为T,其范围为[0,10],分别有5个级别:T∈[0,2)畅通;T∈[2,4)基本畅通;T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10]严重拥堵.早高峰时段(T≥3 ),从襄阳市交通指挥中心随机选取了一至四马路之间50个交通路段,依据交通指数数据绘制的直方图如图所示:
(I)据此直方图估算交通指数的中位数和平均数;
(II)据此直方图求出早高峰一至四马路之间的3个路段至少有2个严重拥堵的概率是多少?
(III)某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为35分钟,中度拥堵为45分钟,严重拥堵为60分钟,求此人用时间的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}满足:a1=1,nan+1-(n+1)an=1(n∈N+
(1)求数列{an}的通项公式;
(2)若${b_n}=\frac{{{a_n}+1}}{2}•{(\frac{8}{9})^n}(n∈{N_+})$,求数列{bn}的最大项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若变量x,y满足条件$\left\{\begin{array}{l}x-y-1≤0\\ x+y-6≤0\\ x-1≥0\end{array}\right.$,则xy的取值范围是(  )
A.[0,5]B.$[{5,\frac{35}{4}}]$C.$[{0,\frac{35}{4}}]$D.[0,9]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{lnx}{x+a}$(a∈R),曲线y=f(x)在点(1,f(1))处的切线与直线x+y+1=0垂直.
(Ⅰ)试比较20162017与20172016的大小,并说明理由;
(Ⅱ)若函数g(x)=f(x)-k有两个不同的零点x1,x2,证明:x1•x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若i为虚数单位,则$\frac{1+i}{3-i}$-$\frac{i}{3+i}$=(  )
A.$\frac{2-i}{10}$B.$\frac{1+i}{10}$C.$\frac{4+7i}{10}$D.$\frac{4-i}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知正三棱柱ABC-A1B1C1所有棱长均为2,D、E分别是BC、BB1中点.
(1)证明:C1E⊥面ADC1
(2)求二面角A1-C1D-A的余弦值;
(3)若线段AA1上存在一点P,满足直线CE和直线C1P异面直线成角的余弦值是$\frac{\sqrt{2}}{5}$,求A1P长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若x6=a0+a1(2x-1)+a2(2x-1)2+…+a6(2x-1)6,则a2=$\frac{15}{64}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.用系统抽样的方法从300名学生中抽取容量为20的样本,将300名学生从1-300编号,按编号顺序平均分组.若第16组应抽出的号码为232,则第一组中抽出的号码是(  )
A.5B.6C.7D.8

查看答案和解析>>

同步练习册答案