精英家教网 > 高中数学 > 题目详情
9.2011年,国际数学协会正式宣布,将每年的3月14日设为国际数学节,来源则是中国古代数学家祖冲之的圆周率.祖冲之,在世界数学史上第一次将圆周率(π)值计算到小数点后的第7位,即3.1415926到3.1415927之间,数列{an}是公差大于0的等差数列,其前三项是“31415926”中连续的三个数,数列{bn}是等比数列,其公比大于1的正整数且前三项是“31415926”中的三个数,且a3=b3
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)cn=$\left\{\begin{array}{l}{\frac{32}{({a}_{n}+3)•({a}_{n+2}+3)},n=2k-1(k∈N*)}\\{lo{g}_{3}{b}_{n+1},n=2k(k∈N*)}\end{array}\right.$,求c1+c2+c3+…+c${\;}_{{2}^{n}}$.(n∈N*)

分析 (Ⅰ)通过题干确定数列{an}、{bn}的前三项,进而可得结论;
(Ⅱ)通过(I)可求出cn的表达式,利用裂项相消法可知奇数项的和,利用分组求和法可求出偶数项的和,进而相加即得结论.

解答 解:(Ⅰ)由题可知a1=1,a2=5,a3=9,
b1=4,b2=6,b3=9,
所以an=1+4(n-1)=4n-3,bn=4×$({\frac{3}{2})}^{n-1}$;
(Ⅱ)由(I)可知cn=$\left\{\begin{array}{l}{\frac{32}{4n•4(n+2)}=\frac{1}{n}-\frac{1}{n+2}}&{,n=2k-1}\\{lo{g}_{3}\frac{{3}^{n}}{{2}^{n-2}}=n-(n-2)lo{g}_{3}2}&{,n=2k}\end{array}\right.$,
则c1+c3+…+${c}_{{2}^{n}-1}$=1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n}+1}$=1-$\frac{1}{{2}^{n}+1}$,
c2+c4+…+${c}_{{2}^{n}}$=(2+4+…+2n)-[(2-2)+(4-2)+(6-2)+…+(2n-2)]log32
=$\frac{{2}^{n-1}(2+{2}^{n})}{2}$-[$\frac{{2}^{n-1}(2+{2}^{n})}{2}$-2n]log32
=2n-1+22n-2-(22n-2-2n-1)log32,
故所求值为1-$\frac{1}{{2}^{n}+1}$+2n-1+22n-2-(22n-2-2n-1)log32.

点评 本题考查数列的通项及前n项和,考查裂项相消法,考查分组求和法,考查对数的运算性质,考查运算求解能力,考查分类讨论的思想,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知复数z满足(z-5)(1-i)=1+i,则复数z的共轭复数为(  )
A.5+iB.5-iC.-5+iD.-5-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.(1-2x)3的展开式中所有的二项式系数和为a,函数y=mx-2+1(m>0且m≠1)经过的定点的纵坐标为b,则${({bx+3y})^3}•{({x+\frac{5}{4}y})^5}$的展开式中x6y2的系数为(  )
A.320B.446C.482D.248

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若实数变量x、y满足约束条件|x+y|+|x-2y|≤3,目标函数z=ax-y+1(a∈R).有如下结论:①可行域外轮廓为矩形;②可行域面积为3;③a=1时,z的最小值为-1;④a=2时,使得z取最大值的最优解有无数组;则下列组合中全部正确的为(  )
A.①②B.②③C.①③D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)满足f(x)=-f(x-1),则函数f(x)的图象不可能发生的情形是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知圆O的半径为定长r,点A是平面内一定点(不与O重合),P是圆O上任意一点,线段AP的垂直平分线l和直线OP相交于点Q,当点P在圆上运动时,点Q的轨迹可能是下列几种:①椭圆,②双曲线,③抛物线,④直线,⑤点(  )
A.①②⑤B.①②③C.①④⑤D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图1为某市2017年2月28天的日空气质量指数折线图.

由中国空气质量在线监测分析平台提供的空气质量指数标准如下:
空气质量指数(0,50](50,100](100,150](150,200](200,300]300以上
空气质量等级1级优2级良3级轻度污染4级中度污染5级重度污染6级严重污染
(Ⅰ)请根据所给的折线图补全如图2所示的频率分布直方图(并用铅笔涂黑矩形区域),并估算该市2月份空气质量指数监测数据的平均数(保留小数点后一位);
(Ⅱ)在该月份中任取两天,求空气质量至少有一天为优或良的概率;
(Ⅲ)如果该市对环境进行治理,治理后经统计,每天的空气质量指数近似满足X~N(75,552),则治理后的空气质量指数均值大约下降了多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设数列{an}(n≥1,n∈N)满足a1=2,a2=6,且(an+2-an+1)-(an+1-an)=2,若[x]表示不超过x的最大整数,则[$\frac{2017}{{a}_{1}}$+$\frac{2017}{{a}_{2}}$+…+$\frac{2017}{{a}_{2017}}$]=2016.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.河南多地遭遇年霾,很多学校调整元旦放假时间,提前放假让学生们在家躲霾.郑州市根据《郑州市人民政府办公厅关于将重污染天气黄色预警升级为红色预警的通知》,自12月29日12时将黄色预警升级为红色预警,12月30日0时启动Ⅰ级响应,明确要求“幼儿园、中小学等教育机构停课,停课不停学”.学生和家长对停课这一举措褒贬不一,有为了健康赞成的,有怕耽误学习不赞成的,某调查机构为了了解公众对该举措的态度,随机调查采访了50人,将调查情况整理汇总成如表:
年龄(岁)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]
频数510151055
赞成人数469634
(Ⅰ)请在图中完成被调查人员年龄的频率分布直方图;
(Ⅱ)若从年龄在[25,35),[65,75]两组采访对象中各随机选取2人进行深度跟踪调查,选中4人中不赞成这项举措的人数为X,求随机变量X的分布列和数学期望.

查看答案和解析>>

同步练习册答案