精英家教网 > 高中数学 > 题目详情
5.若x<2,求x+$\frac{4}{x-2}$的最大值.

分析 由题意可得x-2<0,可得x+$\frac{4}{x-2}$=x-2+$\frac{4}{x-2}$+2,由基本不等式可得.

解答 解:∵x<2,∴x-2<0,
∴x+$\frac{4}{x-2}$=x-2+$\frac{4}{x-2}$+2
≤-2$\sqrt{(x-2)\frac{4}{x-2}}$+2=-2
当且仅当x-2=$\frac{4}{x-2}$即x=0时取等号,
∴x+$\frac{4}{x-2}$的最大值为-2

点评 本题考查基本不等式求最值,变形为可用基本不等式的形式是解决问题的关键,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=3-x(-1≤x≤1)
(1)求关于x的函数y=[f(x)]2-2a•f(x)+3(a≤3),当x∈[-1,1]时的最小值h(a);
(2)我们把同时满足下列两个性质的函数称为“和谐函数”:
①函数在整个定义域上是单调递增函数或单调递减函数;
②在函数的定义域内存在区间[p,q]使得函数在区间[p,q]上的值域为p2,q2的闭区间(p<q);
(Ⅰ)判断(1)中h(x)是否为“和谐函数”?若是,求出p,q的值或关系式;若不是,请说明理由;
(Ⅱ)若关于x的函数y=$\sqrt{{x}^{2}-1}$+t(x≥1)是“和谐函数”,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f(x)=${log}_{\frac{1}{3}}$x-3x在[1,2]上的最大值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.计算:(log23+log49+log827+…+${log}_{{2}^{n}}$3n)•log9$\root{n}{32}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知数列{an}中,a1=1,a2=$\frac{1}{2}$,[3+(-1)n]an+2=2an+2[1-(-1)n].
(1)求数列{an}的通项公式;
(2)设bn=a2n-1•a2n,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{a-{a}^{2}+6}{{2}^{x}-a}$(a∈R),在[1,+∞)上单凋递减,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.化简:$\sqrt{(lo{g}_{3}5)^{2}-4lo{g}_{3}5+4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.(1)数列$\frac{3}{2}$,1,$\frac{7}{10}$,$\frac{9}{17}$,…,的一个通项公式为an=$\frac{2n+1}{{n}^{2}+1}$.
(2)在数列1,2,$\sqrt{7}$,$\sqrt{10}$,$\sqrt{13}$,…中,2$\sqrt{19}$是这个数列的第26项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.化简:(1)$\frac{{sin({\frac{π}{2}-α})cos({2π-α})tan({-α+3π})}}{{tan({π+α})sin({\frac{π}{2}+α})}}$;
(2)$\sqrt{1-2sin2cos2}$.

查看答案和解析>>

同步练习册答案