精英家教网 > 高中数学 > 题目详情

已知长方体ABCD-A1B1C1D1中,AB=3,BC=2,BB1=1,BD1与平面AC所成的角为,则cosθ的值是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
A
分析:由已知中长方体ABCD-A1B1C1D1中,AB=3,BC=2,BB1=1,结合正方体的几何特征,结合线面夹角的定义,我们易得∠D1BD即为BD1与平面AC所成的角,解Rt△D1BD,即可得到BD1与平面AC所成的角的余弦值.
解答:∵在长方体ABCD-A1B1C1D1中,
D1在平面AC上的射影为D,
故BD1在平面AC上的射影为BD,
则∠D1BD即为BD1与平面AC所成的角
∵AB=3,BC=2,BB1=1,
∴在Rt△D1BD中,D1D=BB1=1,BD==,D1B=
∴cosθ==
故选A
点评:本题考查的知识点是线面夹角,其中根据已知确定出∠D1BD即为BD1与平面AC所成的角,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知长方体ABCD-A1B1C1D1中,AB=2,BC=4,AA1=4,点M是棱D1C1的中点.
(1)试用反证法证明直线AB1与BC1是异面直线;
(2)求直线AB1与平面DA1M所成的角(结果用反三角函数值表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知长方体ABCD-A1B1C1D1中,DA=DD1=1,DC=
2
,点E是B1C1的中点,点F在AB上,建立空间直角坐标系如图所示.
(1)求
AE
的坐标及长度;
(2)求点F的坐标,使直线DF与AE的夹角为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知长方体ABCD-A1B1C1D1中,M、N分别是BB1和BC的中点,AB=4,AD=2,BB1=2
15
,求异面直线B1D与MN所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知长方体ABCD-A1B1C1D1,AB=BC=1,BB1=2,连接B1C,过B点作B1C.
的垂线交CC1于E,交B1C于F.
(I)求证:A1C⊥平面EBD;
(Ⅱ)求直线DE与平面A1B1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知长方体ABCD-A1B1C1D1,下列向量的数量积一定不为0的是(  )
精英家教网
A、
AD1
B1C
B、
BD1
AC
C、
AB
AD1
D、
BD1
BC

查看答案和解析>>

同步练习册答案