精英家教网 > 高中数学 > 题目详情
12.设变量x,y满足约束条件$\left\{\begin{array}{l}x+y≤4\\ y≥x\\ x≥1\end{array}\right.$,若目标函数z=ax+y的最小值为-2,则a=-2.

分析 作出不等式组对应的平面区域,利用目标函数的最小值建立条件关系进行求解即可.

解答 解:作出约束条件$\left\{\begin{array}{l}x+y≤4\\ y≥x\\ x≥1\end{array}\right.$对应的平面区域,
∵目标函数且ax+y=z的最小值为-2,
此时目标函数为ax+y=-2
即y=-ax-2,则此时直线过定点A(2,2),
由ax+y=z得y=-ax+z,
则当直线截距最小时,z最小,
则等价为可行域都在直线y=-ax-2的上方,
由图象知当直线y=-ax-2经过A时,满足条件,
此时2a+2=-2,即
a=-2,
故答案为:-2.

点评 本题主要考查线性规划的应用,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知正项等比数列{an},且a1a5+2a3a5+a3a7=25,则a3+a5=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在四棱锥P-ABCD中,底面ABCD是菱形,且AB=$\sqrt{2}$,∠ABC=60°,点A在平PBC上的射影为PB的中点O,PB⊥AC.
(1)求证:PC=PD;
(2)求平面BAP与平面PCD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=Asin(ωx+ϕ),x∈R(其中A>0,ω>0,0<ϕ<$\frac{π}{2}$)的图象与x轴的交点中,相邻两个交点之间的距离为$\frac{π}{4}$,且图象上一个最低点为$M(\frac{π}{3},-1)$.
(Ⅰ)求f(x)的表达式;
(Ⅱ)将函数f(x)的图象向右平移$\frac{π}{8}$个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=g(x)的图象,若关于x的方程g(x)+k=0,在区间[0,$\frac{π}{2}$]上有且只有一个实数解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.任取实数x,y∈[0,1],则满足$\frac{1}{2}x≤y≤\sqrt{x}$的概率为(  )
A.$\frac{3}{4}$B.$\frac{3}{5}$C.$\frac{5}{6}$D.$\frac{5}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=a(x-1),g(x)=(ax-1)ex,a∈R.
(Ⅰ)判断直线y=f(x)能否与曲线y=g(x)相切,并说明理由;
(Ⅱ)若不等式f(x)>g(x)有且仅有两个整数解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=|x+5|-|x-1|(x∈R).
( I)解关于x的不等式f(x)≤x;
( II)证明:记函数f(x)的最大值为k,若lga+lg(2b)=lg(a+4b+k),试求ab的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.对于三次函数f(x)=ax3+bx2+cx+d(a≠0),给出定义:设f′(x)是函数y=f(x)的导数,f″(x)是f′(x)的导数,若方程f″(x)=0有实数解x0,则称点(x0,f(x0))为函数y=f(x)的“拐点”.某同学经过探究发现,任何一个三次函数都有“拐点”和对称中心,且“拐点”就是对称中心.
(Ⅰ)求函数f(x)=x3-3x2+3x的对称中心.
(Ⅱ)对于(Ⅰ)中的函数f(x),计算f(-98)+f(-97)+…+f(-1)+f(0)+f(1)+…+f(99)+f(100).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某四面体的三视图如图所示,其中侧视图与俯视图都是腰长为2的等腰直角三角形,正视图是边长为2的正方形,则此四面体的体积为$\frac{4}{3}$,表面积为2+2$\sqrt{3}+4\sqrt{2}$.

查看答案和解析>>

同步练习册答案