精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=|x+5|-|x-1|(x∈R).
( I)解关于x的不等式f(x)≤x;
( II)证明:记函数f(x)的最大值为k,若lga+lg(2b)=lg(a+4b+k),试求ab的最小值.

分析 (Ⅰ)通过讨论x的范围,求出各个区间上的x的范围,取并集即可;
(Ⅱ)求出k的值,结合已知得到ab-2$\sqrt{ab}$-3≥0,解出即可.

解答 解:(I)由x≤-5和-(x+5)+(x-1)≤x⇒-6≤x≤-5
由-5<x<1和(x+5)+(x-1)≤x⇒-5<x≤-4,
由x≥1和(x+5)-(x-1)≤x⇒x≥6,
因此{x|-6≤x≤-4或x≥6};
(II)由f(x)=|x+5|-|x-1|≤|x+5-x+1|=6,故k=6,
由lga+lg(2b)=lg(a+4b+k),
得2ab=a+4b+6,
得2ab≥4$\sqrt{ab}$+6,
故ab-2$\sqrt{ab}$-3≥0,
即($\sqrt{ab}$-3)($\sqrt{ab}$+1)≥0,
解得:$\sqrt{ab}$≥3,
故ab≥9.

点评 本题考查了解绝对值不等式问题,考查分类讨论思想,转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.每次试验的成功率为p(0<p<1),重复进行10次试验,其中前6次都未成功,后4次都成功的概率为(1-p)6•p4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设函数g(x)=x(x2-1),则g(x)在区间(0,1)上的最小值为(  )
A.-1B.0C.-$\frac{2\sqrt{3}}{9}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设变量x,y满足约束条件$\left\{\begin{array}{l}x+y≤4\\ y≥x\\ x≥1\end{array}\right.$,若目标函数z=ax+y的最小值为-2,则a=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若复数$\frac{a-i}{2+i}$的实部与虚部相等,则实数a的值为(  )
A.3B.-3C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=ax3-x2-x+b(a,b∈R),g(x)=$\frac{{3\sqrt{e}}}{4}{e^x}(e$是自然对数的底数),f(x)的图象在x=-$\frac{1}{2}$处的切线方程为y=$\frac{3}{4}x+\frac{9}{8}$.
(1)求a,b的值; 
(2)探究:直线y=$\frac{3}{4}x+\frac{9}{8}$.是否可以与函数g(x)的图象相切?若可以,写出切点坐标,否则,说明理由
(3)证明:当x∈(-∞,2]时,f(x)≤g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知复数z=a+bi,且|z-2|=1,则$\frac{b}{a}$的最大值为(  )
A.3B.$\sqrt{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.刘徽是我国魏晋时期著名的数学家,他编著的《海岛算经》中有一问题:“今有望海岛,立两表齐,高三丈,前后相去千步,令后表与前表相直.从前表却行一百二十三步,人目著地取望岛峰,与表末参合.从后表却行百二十七步,人目著地取望岛峰,亦与表末参合.问岛高几何?”意思是:为了测量海岛高度,立了两根表,高均为5步,前后相距1000步,令后表与前表在同一直线上,从前表退行123步,人恰观测到岛峰,从后表退行127步,也恰观测到岛峰,则岛峰的高度为(  )(注:3丈=5步,1里=300步)
A.4里55步B.3里125步C.7里125步D.6里55步

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}是递增的等比数列,a1+a3+a5=21,a3=6,则a5+a7+a9=(  )
A.$\frac{21}{4}$B.$\frac{21}{2}$C.42D.84

查看答案和解析>>

同步练习册答案