精英家教网 > 高中数学 > 题目详情
3.已知正项等比数列{an},且a1a5+2a3a5+a3a7=25,则a3+a5=5.

分析 由题意可得 a32+2a3a5+a52=25,即(a3+a52=25,可得a3+a5 =5.

解答 解:在正项等比数列{an} 中,a1a5+2a3a5+a3a7=25,即a32+2a3a5+a52=25,
∴(a3+a52=25,
故a3+a5 =5,
故答案为:5

点评 本题考查等比数列的定义和性质,得到 a32+2a3a5+a52=25,是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知半径为1的扇形面积为$\frac{π}{3}$,则此扇形的周长为$\frac{2π}{3}$+2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知向量$\overrightarrow{a}$=(2cosx,$\sqrt{3}$sinx),$\overrightarrow{b}$=(3cosx,-2cosx),设函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$
(1)求f(x)的最小正周期;
(2)若x∈[0,$\frac{π}{2}$],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,若sin2B+$\sqrt{2}sinBsinC={sin^2}A-{sin^2}$C,则A的值为$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知直线l过定点(1,0),且倾斜角为$\frac{π}{3}$,则直线l的一般式方程为$\sqrt{3}$x-y-$\sqrt{3}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,OA、OB是两条公路(近似看成两条直线),$∠AOB=\frac{π}{3}$,在∠AOB内有一纪念塔P(大小忽略不计),已知P到直线OA、OB的距离分别为PD、PE,PD=6千米,PE=12千米.现经过纪念塔P修建一条直线型小路,与两条公路OA、OB分别交于点M、N.
(1)求纪念塔P到两条公路交点O处的距离;
(2)若纪念塔P为小路MN的中点,求小路MN的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.每次试验的成功率为p(0<p<1),重复进行10次试验,其中前6次都未成功,后4次都成功的概率为(1-p)6•p4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若关于x的不等式x2+mx<0的解集为{x|0<x<2},则实数m的值为(  )
A.-2B.-1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设变量x,y满足约束条件$\left\{\begin{array}{l}x+y≤4\\ y≥x\\ x≥1\end{array}\right.$,若目标函数z=ax+y的最小值为-2,则a=-2.

查看答案和解析>>

同步练习册答案