精英家教网 > 高中数学 > 题目详情
11.在△ABC中,若sin2B+$\sqrt{2}sinBsinC={sin^2}A-{sin^2}$C,则A的值为$\frac{3π}{4}$.

分析 利用正弦定理化简已知的等式,得到关于a,b及c的关系式,再利用余弦定理表示出cosA,把得出的关系式变形后代入求出cosA的值,由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数.

解答 解:根据正弦定理$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$=2R,
化简已知的等式得:b2+$\sqrt{2}$bc=a2-c2,即b2+c2-a2=-$\sqrt{2}$bc,
∴根据余弦定理得:cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=-$\frac{\sqrt{2}}{2}$,
又∵A∈(0,π),
∴A=$\frac{3π}{4}$.
故答案为:$\frac{3π}{4}$.

点评 此题考查了正弦定理,余弦定理,以及特殊角的三角函数值,正弦、余弦定理很好的建立了三角形的边角关系,熟练掌握定理是解本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知锐角△ABC的三个内角A,B,C的对边分别为a,b,c,且$\overrightarrow m$=(a,b+c),$\overrightarrow n=({1,cosC+\sqrt{3}sinC}),\overrightarrow m∥\overrightarrow n$.
(1)求角A;
(2)若a=3,求△ABC面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在等比数列中,已知a3=$\frac{3}{2}$,s3=$\frac{9}{2}$,求q=-$\frac{1}{2}$或1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知复数z=$\frac{2-i}{1+i}$,其中i是虚数单位,则z的模是$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知α∈($\frac{π}{2}$,π),且sin$\frac{α}{2}$+cos$\frac{α}{2}$=$\frac{3\sqrt{5}}{5}$
(1)求sinα的值;
(2)求cos(2α+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设数列{an}的前n项和为Sn,且an=2-2Sn,数列{bn}为等差数列,且b5=14,b7=20.
(1)求数列{an}的通项公式;
(2)若cn=an•bn,n∈N*,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知正项等比数列{an},且a1a5+2a3a5+a3a7=25,则a3+a5=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.环境监测中心监测我市空气质量,每天都要记录空气质量指数(指数采取10分制,保留一位小数).现随机抽取20天的指数(见下表),将指数不低于8.5视为当天空气质量优良.
 天数 134 7 810 
 空气质量指数 7.18.3  7.3 9.5 8.6 7.7 8.7 8.88.7  9.1
 天数 1112 13 14 1516 17 18 19 20 
 空气质量指数 7.4 8.5 9.7 8.4 9.6 7.6 9.4 8.9 8.3 9.3
(Ⅰ)求从这20天随机抽取3天,至少有2天空气质量为优良的概率;
(Ⅱ)以这20天的数据估计我市总体空气质量(天数很多).若从我市总体空气质量指数中随机抽取3天的指数,用X表示抽到空气质量为优良的天数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=Asin(ωx+ϕ),x∈R(其中A>0,ω>0,0<ϕ<$\frac{π}{2}$)的图象与x轴的交点中,相邻两个交点之间的距离为$\frac{π}{4}$,且图象上一个最低点为$M(\frac{π}{3},-1)$.
(Ⅰ)求f(x)的表达式;
(Ⅱ)将函数f(x)的图象向右平移$\frac{π}{8}$个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=g(x)的图象,若关于x的方程g(x)+k=0,在区间[0,$\frac{π}{2}$]上有且只有一个实数解,求实数k的取值范围.

查看答案和解析>>

同步练习册答案