精英家教网 > 高中数学 > 题目详情
函数f(x)=ln2x+2lnx+2的极小值是(

Ae-1              B0                C-1              D1

 

答案:D
提示:

将lnx看成一个整体,其取值为(0,+∝),再利用一元二次函数求最值的方法求出最小值。

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ln2(1+x)-
x21+x
,g(x)=2(1+x)ln(1+x)-x2-2x.
(1)证明:当x∈(0,+∞)时,g(x)<0;
(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln
2-xa+x
是奇函数,
(1)求a的值;
(2)求函数f(x)的定义域;
(3)求证f(x)在定义域上是单调减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln2(1+x)-
x2
1+x

(I)求函数f(x)的单调区间;
(Ⅱ)若不等式(1+
1
n
)n+a≤e
对任意的n∈N*都成立(其中e是自然对数的底数).求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln2(1+x),g(x)=
x2
1+x

(1)证明:对任意x>-1,有f(x)≤g(x)成立;
(2)若不等式(1+
1
n
)n+a≤e
对任意的n∈N*都成立(其中e为自然对数的底数),求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•黄山模拟)已知函数f(x)=ln2(1+x),g(x)=
x2
1+x

(Ⅰ)分别求函数f(x)和g(x)的图象在x=0处的切线方程;
(Ⅱ)证明不等式ln2(1+x)≤
x2
1+x

(Ⅲ)对一个实数集合M,若存在实数s,使得M中任何数都不超过s,则称s是M的一个上界.已知e是无穷数列an=(1+
1
n
)n+a
所有项组成的集合的上界(其中e是自然对数的底数),求实数a的最大值.

查看答案和解析>>

同步练习册答案