分析 根据题意,将四面体ABCD放置于如图所示的正方体中,则正方体的外接球就是四面体ABCD的外接球.因此利用题中数据算出外接球半径R=$\frac{\sqrt{6}}{2}$,过E点的截面到球心的最大距离,再利用球的截面圆性质可算出截面面积的最小值.
解答 解:将四面体ABCD放置于正方体中,如图所示![]()
可得正方体的外接球就是四面体ABCD的外接球,
∵正四面体ABCD的棱长为2,
∴正方体的棱长为$\sqrt{2}$,
可得外接球半径R满足2R=$\sqrt{6}$,解得R=$\frac{\sqrt{6}}{2}$
E为棱BC的中点,过E作其外接球的截面,当截面到球心O的距离最大时,
截面圆的面积达最小值,
此时球心O到截面的距离等于正方体棱长的一半,
可得截面圆的半径为r=$\sqrt{\frac{6}{4}-1}$=$\frac{\sqrt{2}}{2}$,得到截面圆的面积最小值为S=πr2=$\frac{1}{2}$π.
故答案为:$\frac{1}{2}$π.
点评 本题给出正四面体的外接球,求截面圆的面积最小值.着重考查了正方体的性质、球内接多面体和球的截面圆性质等知识,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com