精英家教网 > 高中数学 > 题目详情

【题目】如图,四边形为菱形,四边形为平行四边形,设相交于点

1)证明:平面平面

2)若与平面所成角为60°,求二面角的余弦值.

【答案】(1)见解析;(2)

【解析】试题分析:(1)根(1)要证面面垂直,需要找线面垂直,本题中重点分析线段,利用条件底面是菱形可得,通过全等可知,从而,故是平面的垂线,从而得证;(2)涉及二面角的计算,一般需要建系设点,计算平面的法向量,利用二面角与法向量夹角之间的关系处理,需要注意建系时分析清楚哪三条线互相垂直.

试题解析:

(1)证明:连接

∵四边形为菱形,

中,

平面

平面

∴平面平面

(2)

解法一:过垂线,垂足为,连接,易得与面所成的角,

平面

为二面角的平面角,

可求得

中由余弦定理可得:

∴二面角的余弦值为

解法二:如图,在平面内,过的垂线,交点,由(1)可知,平面平面

平面

∴直线两两互相垂直,

分别轴建立空间直角坐标系

易得与平面所成的角,∴

设平面的一个法向量为,则

,且

,可得平面的一个法向量为

同理可求得平面的一个法向量为

∴二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】解方程ln(2x+1)=ln(x2﹣2);
求函数f(x)=( 2x+2×( x(x≤﹣1)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知),定义.

(1)求函数的极值

(2)若,且存在使,求实数的取值范围;

(3)若,试讨论函数)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂家拟在2017年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)(单位:万件)与年促销费用(单位:万元)()满足 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2017年生产该产品的固定投入为8万元.每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).

(1)将2017年该产品的利润(单位:万元)表示为年促销费用(单位:万元)的函数;

(2)该厂家2017年的促销费用投入多少万元时,厂家的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知: 是同一平面上的三个向量,其中 =(1,2).
(1)若| |=2 ,且 ,求 的坐标.
(2)若| |= ,且 +2 与2 垂直,求 的夹角θ

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】运货卡车以每小时千米的速度匀速行驶千米().假设汽油的价格是每升元,而汽车每小时耗油升,司机的工资是每小时元.

(1)求这次行车总费用关于的表达式;

(2)当为何值时,这次行车的总费用最低?并求出最低费用的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)若,求在点处的切线方程;

(Ⅱ)讨论函数的单调性;

(Ⅲ)若存在两个极值点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与圆,点在圆上,点在圆上.

(1)求的最小值;

(2)直线上是否存在点,满足经过点由无数对相互垂直的直线,它们分别与圆和圆相交,并且直线被圆所截得的弦长等于直线被圆所截得的弦长?若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题正确的是(
A.单位向量都相等
B.若 是共线向量, 是共线向量,则 是共线向量
C.| + |=| |,则 =0
D.若 是单位向量,则 =1

查看答案和解析>>

同步练习册答案