【题目】如图,四边形为菱形,四边形为平行四边形,设与相交于点, .
(1)证明:平面平面;
(2)若与平面所成角为60°,求二面角的余弦值.
【答案】(1)见解析;(2).
【解析】试题分析:(1)根(1)要证面面垂直,需要找线面垂直,本题中重点分析线段,利用条件底面是菱形可得,通过全等可知,从而,故是平面的垂线,从而得证;(2)涉及二面角的计算,一般需要建系设点,计算平面的法向量,利用二面角与法向量夹角之间的关系处理,需要注意建系时分析清楚哪三条线互相垂直.
试题解析:
(1)证明:连接,
∵四边形为菱形,
∵,
在和中,
, ,
∴,
∴,
∴,
∵,
∴平面,
∵平面,
∴平面平面;
(2)
解法一:过作垂线,垂足为,连接,易得为与面所成的角,
∴,
∵,
∴平面,
∴为二面角的平面角,
可求得,
在中由余弦定理可得: ,
∴二面角的余弦值为;
解法二:如图,在平面内,过作的垂线,交于点,由(1)可知,平面平面,
∴平面,
∴直线两两互相垂直,
分别为轴建立空间直角坐标系,
易得为与平面所成的角,∴,
则,
,
设平面的一个法向量为,则
且,
∴,且
取,可得平面的一个法向量为,
同理可求得平面的一个法向量为,
∴,
∴二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】某厂家拟在2017年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)(单位:万件)与年促销费用(单位:万元)()满足( 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2017年生产该产品的固定投入为8万元.每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).
(1)将2017年该产品的利润(单位:万元)表示为年促销费用(单位:万元)的函数;
(2)该厂家2017年的促销费用投入多少万元时,厂家的利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知: 、 、 是同一平面上的三个向量,其中 =(1,2).
(1)若| |=2 ,且 ∥ ,求 的坐标.
(2)若| |= ,且 +2 与2 ﹣ 垂直,求 与 的夹角θ
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】运货卡车以每小时千米的速度匀速行驶千米().假设汽油的价格是每升元,而汽车每小时耗油升,司机的工资是每小时元.
(1)求这次行车总费用关于的表达式;
(2)当为何值时,这次行车的总费用最低?并求出最低费用的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆与圆,点在圆上,点在圆上.
(1)求的最小值;
(2)直线上是否存在点,满足经过点由无数对相互垂直的直线和,它们分别与圆和圆相交,并且直线被圆所截得的弦长等于直线被圆所截得的弦长?若存在,求出点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题正确的是( )
A.单位向量都相等
B.若 与 是共线向量, 与 是共线向量,则 与 是共线向量
C.| + |=| ﹣ |,则 =0
D.若 与 是单位向量,则 =1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com