精英家教网 > 高中数学 > 题目详情
物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T0,经过一定时间t后的温度是T,则T-Ta=(T0-Ta)•(
1
2
)
t
h
,其中Ta表示环境温度,h称为半衰期.现有一杯用88℃热水冲的速溶咖啡,放在24℃的房间中,如果咖啡降温到40℃需要20min,那么降温到35℃时,需要多长时间?
考点:函数模型的选择与应用
专题:函数的性质及应用
分析:根据题意,先将题目中的条件代入公式T-Ta=(T0-Ta)•(
1
2
)
t
h
,求解就可得到半衰期h的值.再利用公式T-Ta=(T0-Ta)•(
1
2
)
t
h
,中T0=40,半衰期h的值,T=35,代入就可解出此时需要多少分钟.
解答: 解:由题意,40-24=(88-24)•(
1
2
)
20
h
⇒h=10
则T-Ta=(T0-Ta)•(
1
2
)
t
h
,将T0=40,Ta=24,T=35,代入
T-Ta=(T0-Ta)•(
1
2
)
t
10

35-24=(40-24)(
1
2
)
t
10
⇒t=25,
答:约需要25 min,可降温到35℃.
点评:本题考查了指数函数的综合题,通过研究指数函数的性质解释实际问题.我们要掌握底数 两种基本情况下函数的性质特别是单调性和值域的差别,它能帮我们解释具体问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知矩形ABCD的长为2,宽为1,AB、AD边分别在x轴、y轴的正半轴上,A点与坐标原点重合(如图所示).将矩形折叠,使A点落在线段DC上.
(1)若折痕斜率为-1,求折痕所在的直线方程;
(2)若折痕所在直线的斜率为k,试求折痕所在直线的方程;
(3)当-2+
3
≤k≤0时,求折痕长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0,f(x)=
x
x-a
,g(x)=
xex
x-a
,求曲线y=f(x)与y=g(x)在x=0处的切线.

查看答案和解析>>

科目:高中数学 来源: 题型:

某地区重视环境保护,绿色植被面积呈上升趋势,经过调查,现有森林面积为10000m2,每年增长10%,经过x年,森林面积为ym2
(1)写出x,y之间的函数关系式;
(2)求出经过10年后森林的面积.(可借助于计算器)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,a1=1,Sn=4an+Sn-1-an-1(n≥2,且n∈N*
(1)证明数列{an}为等比数列;
(2)若对?n∈N*,不等式an+α>Sn恒成立,求实数α的最小值;
(3)若cn=tn[n(lg3+lgt)+lgan+1](t>0),且数列{cn}中的每一项总小于它后面的项,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x丨x2-3x+2=0},B={x丨a-1<x<2a+3},A∩B=A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x∈R|x2-(a-1)x+b=0,a、b∈R},集合B={x|x2-bx-a=1,x∈R},若2013∈A,-1∈A,试用列举法表示集合B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
,满足|
a
|=3,|
b
|=2
3
,且
a
⊥(
a
+
b
),则
a
b
的夹角为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正方形ABCD的边长为1,点M,N分别在线段AB,AD上.若3|MN|2+|CM|2+|CN|2=
9
2
,则|AM|+|AN|的最大值是
 

查看答案和解析>>

同步练习册答案