精英家教网 > 高中数学 > 题目详情
16.设函数f(x)=x+$\frac{a}{x+1}$,x∈[0,+∞)
(1)当a=2时,求函数f(x)的最小值;
(2)当0<a<1时,求函数f(x)的最小值.

分析 (1)当a=2时,将函数f(x)变形,然后利用均值不等式即可求出函数f(x)的最小值;
(2)先取值任取0≤x1<x2然后作差f(x1)-f(x2),判定其符号即可判定函数f(x)在[0,+∞)上的单调性,从而求出函数的最小值.

解答 解:(1)当a=2时,f(x)=x+$\frac{2}{x+1}$=x+1+$\frac{2}{x+1}$-1≥2$\sqrt{2}$-1
当且仅当x+1=$\frac{2}{x+1}$,即x=$\sqrt{2}$-1时取等号,
∴f(x)min=2$\sqrt{2}$-1.
(2)当0<a<1时,任取0≤x1<x2
f(x1)-f(x2)=(x1-x2)[1-$\frac{a}{{(x}_{1}+1){(x}_{2}+1)}$],
∵0<a<1,(x1+1)(x2+1)>1,
∴1-$\frac{a}{{(x}_{1}+1){(x}_{2}+1)}$>0,
∵x1<x2,∴f(x1)<f(x2),即f(x)在[0,+∞)上为增函数,
∴f(x)min=f(0)=a.

点评 本题主要考查了函数的最值的求解,以及函数单调性的判断与证明,同时考查了计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人作为样本,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.
(1)从样本100人中抽取日平均生产件数[60,70)的工人,求“25周岁以上组”和“25周岁以下组”工人的各抽取多少人?
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2的列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?
附:x2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$
P(x2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\sqrt{3}$sinxcosx-cos2x+1
(1)求函数f(x)的单调递增区间;
(2)若f($\frac{θ}{2}$+$\frac{π}{12}$)=$\frac{5}{6}$,θ∈(0,$\frac{π}{2}$),求cos(θ+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)的定义域为[0,1],求下列函数的定义域:
(1)f(x2);
(2)f($\sqrt{x}$-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知直线l:x=my+1过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F,且交椭圆C于A、B两点,点A、B在直线G:x=a2上的射影依次为点D、E.
(1)若抛物线x2=4$\sqrt{3}$y的焦点为椭圆的上顶点,求椭圆C的方程.
(2)若点N($\frac{{a}^{2}+1}{2}$,0)为x轴上一点,求证:$\overrightarrow{AN}$=λ$\overrightarrow{NE}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数f(x)=lnx-x2+x,求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在(1+x)n的展开式中,第9项为(  )
A.C${\;}_{n}^{9}$x9B.C${\;}_{n}^{8}$x8C.C${\;}_{n}^{9}$xn-9D.C${\;}_{n}^{8}$xn-8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某校卫生所成立了调查小组,调查“按时刷牙与患龋齿的关系”,对该校某年级700 名学生进行检查,按患龋齿和不患龋齿分类,得汇总数据:按时刷牙且不患龋齿的学生有60 名,不按时刷牙但不患龋齿的学生有100 名,按时刷牙但患龋齿的学生有 140 名.
(1)能否在犯错概率不超过 0.01 的前提下,认为该年级学生的按时刷牙与患龋齿有关系?
(2)4名校卫生所工作人员甲、乙、丙、丁被随机分成两组,每组 2 人,一组负责数据收集,
另一组负责数据处理,求工作人员甲分到“负责收集数据组”并且工作人员乙分到“负责数据处理组”的概率
P(K2≥k00.0100.0050.001
k06.6357.87910.828
附:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球自由下落,小球在下落的过程中,将遇到黑色障碍物3次,最后落入A袋或B袋中.已知小球每次遇到障碍物时,向左、右两边下落的概率分别是p,1-p.
(Ⅰ)当p为何值时,小球落入B袋中的概率最大,并求出最大值;
(Ⅱ)在容器的入口处依次放入4个小球,记ξ为落入B袋中的小球个数,当p=$\frac{1}{3}$时,求ξ的数学期望.

查看答案和解析>>

同步练习册答案