精英家教网 > 高中数学 > 题目详情
6.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球自由下落,小球在下落的过程中,将遇到黑色障碍物3次,最后落入A袋或B袋中.已知小球每次遇到障碍物时,向左、右两边下落的概率分别是p,1-p.
(Ⅰ)当p为何值时,小球落入B袋中的概率最大,并求出最大值;
(Ⅱ)在容器的入口处依次放入4个小球,记ξ为落入B袋中的小球个数,当p=$\frac{1}{3}$时,求ξ的数学期望.

分析 (I)确定事件记“小球落入A袋中”为事件M,“小球落入B袋中”为事件N,则事件M的对立事件为事件N.得出P(M)=P3+(1-P)3=P3+1-3P+3P2-P3=3(P-$\frac{1}{2}$)2$+\frac{1}{4}$,利用函数式子求解即可.
(II)P(M)=($\frac{1}{3}$)3+($\frac{2}{3}$)3=$\frac{1}{27}$$+\frac{8}{27}$=$\frac{1}{3}$.P(N)=1-P(M)=1-$\frac{1}{3}$=$\frac{2}{3}$.利用服从ξ~B(4,$\frac{2}{3}$),数学期望公式即可.

解答 解:(Ⅰ)记“小球落入A袋中”为事件M,“小球落入B袋中”为事件N,则事件M的对立事件为事件N.
而小球落入A袋中当且仅当小球一直向左落下或一直向右落下,
故P(M)=P3+(1-P)3=P3+1-3P+3P2-P3=3(P-$\frac{1}{2}$)2$+\frac{1}{4}$,
∴当P=$\frac{1}{2}$时,P(M)取最小值$\frac{1}{4}$,P(N)取最大值1-$\frac{1}{4}$=$\frac{3}{4}$.
(Ⅱ)由(Ⅰ)知当P=$\frac{1}{3}$时,
随机变量ξ的所有可能取值为0,1,2,3,4.且ξ~B(4,$\frac{2}{3}$),
∴E(ξ)=4×$\frac{2}{3}$=$\frac{8}{3}$.

点评 本题考察了学生的实际应用问题,;离散型的概率求解,重复试验的数学期望公式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=x+$\frac{a}{x+1}$,x∈[0,+∞)
(1)当a=2时,求函数f(x)的最小值;
(2)当0<a<1时,求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.M(x0,y0)为圆x2+y2=a2(a>0)内异于圆心的一点,则直线x•x0+y•y0=a2与该圆的位置关系为(  )
A.相离B.相交C.相切D.相切或相离

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.抛掷一枚均匀硬币两次,已知有一次是正面向上,则另一次正面向上的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.椭圆C的中心在原点、焦点在x轴上,椭圆C的两个焦点及短轴的两个端点恰是一个面积为8的正方形的四个顶点.
(1)求椭圆C的方程;
(2)设直线y=kx+b与椭圆C恒有两个横坐标不同的交点A、B,
①写出满足上述要求的充要条件(用含k、b的式子表示);
②若线段AB的垂直平分线与x轴交于点P(x0,0),求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义在上(0,$\frac{π}{4}$)的函数f(x)满足2f(x)<f′(x)tan2x,f′(x)是f(x)的导函数,则(  )
A.$\sqrt{3}$f($\frac{π}{12}$)<f($\frac{π}{6}$)B.f($\frac{1}{4}$)$>2f(\frac{π}{12})$sin$\frac{1}{2}$C.$\sqrt{3}$f($\frac{π}{8}$)>$\sqrt{2}$f($\frac{π}{6}$)D.$\sqrt{2}$f($\frac{π}{12}$)>f($\frac{π}{8}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知A(2,0),B(3,3),直线l∥AB,则直线l的斜率为(  )
A.-3B.3C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.直线x+1=0的倾斜角为(  )
A.0B.$\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知公差不为0的等差数列{an}的首项a1为a(a∈R),设数列的前n项和为Sn,且$\frac{1}{{a}_{1}}$,$\frac{1}{{a}_{2}}$,$\frac{1}{{a}_{4}}$成等差数列.(1)求数列{an}的通项公式及Sn(2)记An=$\frac{1}{{S}_{1}}$$+\frac{1}{{S}_{2}}$$+\frac{1}{{S}_{3}}$$+…+\frac{1}{{S}_{n}}$,B${\;}_{n}=\frac{1}{{a}_{1}}$$+\frac{2}{{a}_{2}}$$\frac{3}{{a}_{{2}^{2}}}$+…$+\frac{n}{{a}_{{2}^{n-1}}}$,当n≥2时,计算An与Bn,并比较An与Bn的大小(比较大小只需写出结果,不用证明).

查看答案和解析>>

同步练习册答案