精英家教网 > 高中数学 > 题目详情
17.M(x0,y0)为圆x2+y2=a2(a>0)内异于圆心的一点,则直线x•x0+y•y0=a2与该圆的位置关系为(  )
A.相离B.相交C.相切D.相切或相离

分析 由题意可得:x02+y02<a2,解得圆心到直线的距离d=$\frac{{a}^{2}}{\sqrt{{x}_{0}^{2}{+y}_{0}^{2}}}$>a,即可得解.

解答 解:∵点M在圆内,
∴故x02+y02<a2
∴圆心到直线的距离d=$\frac{{a}^{2}}{\sqrt{{x}_{0}^{2}{+y}_{0}^{2}}}$>a.
故直线与圆相离.
故选:A.

点评 本题主要考查了点到直线的距离公式的应用,考查了点与圆的位置关系,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\sqrt{3}$sinxcosx-cos2x+1
(1)求函数f(x)的单调递增区间;
(2)若f($\frac{θ}{2}$+$\frac{π}{12}$)=$\frac{5}{6}$,θ∈(0,$\frac{π}{2}$),求cos(θ+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在(1+x)n的展开式中,第9项为(  )
A.C${\;}_{n}^{9}$x9B.C${\;}_{n}^{8}$x8C.C${\;}_{n}^{9}$xn-9D.C${\;}_{n}^{8}$xn-8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某校卫生所成立了调查小组,调查“按时刷牙与患龋齿的关系”,对该校某年级700 名学生进行检查,按患龋齿和不患龋齿分类,得汇总数据:按时刷牙且不患龋齿的学生有60 名,不按时刷牙但不患龋齿的学生有100 名,按时刷牙但患龋齿的学生有 140 名.
(1)能否在犯错概率不超过 0.01 的前提下,认为该年级学生的按时刷牙与患龋齿有关系?
(2)4名校卫生所工作人员甲、乙、丙、丁被随机分成两组,每组 2 人,一组负责数据收集,
另一组负责数据处理,求工作人员甲分到“负责收集数据组”并且工作人员乙分到“负责数据处理组”的概率
P(K2≥k00.0100.0050.001
k06.6357.87910.828
附:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.我国对PM2.5采用如下标准:
PM2.5日均值m(微克/立方米)空气质量等级
m<35一级
35≤m≤75二级
m>75超标
某地4月1日至15日每天的PM2.5监测数据如茎叶图所示.
(Ⅰ)期间刘先生有两天经过此地,这两天此地PM2.5监测数据均未超标.请计算出这两天空气质量恰好有一天为一级的概率;
(Ⅱ)从所给15天的数据中任意抽取三天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=\frac{2x+3}{3x}$,数列{an}满足a1=1,${a_{n+1}}=f(\frac{1}{a_n}),(n∈{N^*})$,
(1)求数列{an}的通项公式;
(2)设${b_n}=\frac{1}{{{a_{n-1}}{a_n}}}(n≥2)$,b1=3,Sn=b1+b2+…+bn,若${S_n}<\frac{m-2002}{2}$对一切n∈N*成立,求最小正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,用1,2,3,4表示命中,用5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:
907    966    191     925     271    932    812    458     569   683
431    257    393     027     556    488    730    113     537   989
据此估计,该运动员三次投篮恰有两次命中的概率为(  )
A.0.35B.0.30C.0.25D.0.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球自由下落,小球在下落的过程中,将遇到黑色障碍物3次,最后落入A袋或B袋中.已知小球每次遇到障碍物时,向左、右两边下落的概率分别是p,1-p.
(Ⅰ)当p为何值时,小球落入B袋中的概率最大,并求出最大值;
(Ⅱ)在容器的入口处依次放入4个小球,记ξ为落入B袋中的小球个数,当p=$\frac{1}{3}$时,求ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知数列{an},{bn}满足:a1b1+a2b2+a3b3+…+anbn=(n-1)•2n+1+2(n∈N*),若{bn}是首项为1,公比为2的等比数列,则数列{an}的通项公式是(  )
A.an=2n-1B.an=2nC.an=2nD.an=2n-1

查看答案和解析>>

同步练习册答案