精英家教网 > 高中数学 > 题目详情
9.已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,用1,2,3,4表示命中,用5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:
907    966    191     925     271    932    812    458     569   683
431    257    393     027     556    488    730    113     537   989
据此估计,该运动员三次投篮恰有两次命中的概率为(  )
A.0.35B.0.30C.0.25D.0.20

分析 由题意知模拟三次投篮的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三次投篮恰有两次命中的有可以通过列举得到共5组随机数,根据概率公式,得到结果.

解答 解:由题意知模拟三次投篮的结果,经随机模拟产生了如下20组随机数,
在20组随机数中表示三次投篮恰有两次命中的有:191、271、932、812、393.
共5组随机数,
∴所求概率为$\frac{5}{20}$=0.25,
故选:C.

点评 本题考查模拟方法估计概率,是一个基础题,解这种题目的主要依据是等可能事件的概率,注意列举法在本题的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知定圆⊙O的半径为r,A是圆内的一定点,OA=$\frac{r}{2}$,OB是⊙O的任一半径,作AP⊥OB交OB或OB的延长线于P,求P点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.以下命题中,正确命题是(  )
A.若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$B.若$\overrightarrow{a}$,$\overrightarrow{b}$都是单位向量,则$\overrightarrow{a}$=$\overrightarrow{b}$
C.若$\overrightarrow{a}$=$\overrightarrow{0}$,$\overrightarrow{b}$=0,则$\overrightarrow{a}$=$\overrightarrow{b}$D.若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|且$\overrightarrow{a}∥\overrightarrow{b}$,则$\overrightarrow{a}$=$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.M(x0,y0)为圆x2+y2=a2(a>0)内异于圆心的一点,则直线x•x0+y•y0=a2与该圆的位置关系为(  )
A.相离B.相交C.相切D.相切或相离

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a为实数,函数f(x)=(x2+1)(x+a).
(1)若f′(-1)=0,求函数y=f(x)在[-$\frac{3}{2}$,1]上的极大值和极小值;
(2)若函数f(x)的图象上有与x轴平行的切线,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.抛掷一枚均匀硬币两次,已知有一次是正面向上,则另一次正面向上的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.椭圆C的中心在原点、焦点在x轴上,椭圆C的两个焦点及短轴的两个端点恰是一个面积为8的正方形的四个顶点.
(1)求椭圆C的方程;
(2)设直线y=kx+b与椭圆C恒有两个横坐标不同的交点A、B,
①写出满足上述要求的充要条件(用含k、b的式子表示);
②若线段AB的垂直平分线与x轴交于点P(x0,0),求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知A(2,0),B(3,3),直线l∥AB,则直线l的斜率为(  )
A.-3B.3C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知命题p:?a0∈(0,+∞),a02-2a0-3>0,那么命题p的否定是(  )
A.?a0∈(0,+∞),a02-2a0-3≤0B.?a0∈(-∞,0),a02-2a0-3≤0
C.?a∈(0,+∞),a2-2a-3≤0D.?a∈(-∞,0),a2-2a-3≤0

查看答案和解析>>

同步练习册答案