精英家教网 > 高中数学 > 题目详情
20.以下命题中,正确命题是(  )
A.若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|,则$\overrightarrow{a}$=$\overrightarrow{b}$B.若$\overrightarrow{a}$,$\overrightarrow{b}$都是单位向量,则$\overrightarrow{a}$=$\overrightarrow{b}$
C.若$\overrightarrow{a}$=$\overrightarrow{0}$,$\overrightarrow{b}$=0,则$\overrightarrow{a}$=$\overrightarrow{b}$D.若|$\overrightarrow{a}$|=|$\overrightarrow{b}$|且$\overrightarrow{a}∥\overrightarrow{b}$,则$\overrightarrow{a}$=$\overrightarrow{b}$

分析 根据平面向量相等是模长相等,方向相同,对选项中的命题进行判断即可.

解答 解:对于A,当|$\overrightarrow{a}$|=|$\overrightarrow{b}$|时,$\overrightarrow{a}$=$\overrightarrow{b}$不一定成立,∴命题A错误;
对于B,当$\overrightarrow{a}$,$\overrightarrow{b}$都是单位向量时,$\overrightarrow{a}$=$\overrightarrow{b}$不一定成立,∴命题B错误;
对于C,当$\overrightarrow{a}$=$\overrightarrow{0}$,$\overrightarrow{b}$=$\overrightarrow{0}$时,则$\overrightarrow{a}$=$\overrightarrow{b}$=$\overrightarrow{0}$,命题C正确;
对于D,当|$\overrightarrow{a}$|=|$\overrightarrow{b}$|且$\overrightarrow{a}∥\overrightarrow{b}$时,$\overrightarrow{a}$=$\overrightarrow{b}$或$\overrightarrow{a}$=-$\overrightarrow{b}$,∴命题D错误.
故选:C.

点评 本题考查了平面向量相等的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{e^x}{x+a}$,(a<3且a∈Z),且函数f(x)在区间(-1,0)上单调递增,定义在R上的函数g(x)=(x+b)(x2-8),且函数g(x)在x=1处的切线与直线x-y=0垂直.
(Ⅰ)求函数f(x)与函数g(x)的解析式;
(Ⅱ)已知函数F(x)=$\left\{\begin{array}{l}f(x)•g(x),x≠-2\\-4{e^{-2}},x=-2\end{array}$,试问:是否存在实数a,b,其中[a,b]⊆(-∞,4],使得函数F(x)的值域也为[a,b]?若能,请求出相应的a、b;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,已知直线l:x=my+1过椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点F,且交椭圆C于A、B两点,点A、B在直线G:x=a2上的射影依次为点D、E.
(1)若抛物线x2=4$\sqrt{3}$y的焦点为椭圆的上顶点,求椭圆C的方程.
(2)若点N($\frac{{a}^{2}+1}{2}$,0)为x轴上一点,求证:$\overrightarrow{AN}$=λ$\overrightarrow{NE}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在(1+x)n的展开式中,第9项为(  )
A.C${\;}_{n}^{9}$x9B.C${\;}_{n}^{8}$x8C.C${\;}_{n}^{9}$xn-9D.C${\;}_{n}^{8}$xn-8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知α∈(-$\frac{π}{2}$,0),sinα+cosα=$\frac{1}{5}$
(1)求sinα-cosα的值;
(2)求$\frac{sin2α+2si{n}^{2}α}{1-tanα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某校卫生所成立了调查小组,调查“按时刷牙与患龋齿的关系”,对该校某年级700 名学生进行检查,按患龋齿和不患龋齿分类,得汇总数据:按时刷牙且不患龋齿的学生有60 名,不按时刷牙但不患龋齿的学生有100 名,按时刷牙但患龋齿的学生有 140 名.
(1)能否在犯错概率不超过 0.01 的前提下,认为该年级学生的按时刷牙与患龋齿有关系?
(2)4名校卫生所工作人员甲、乙、丙、丁被随机分成两组,每组 2 人,一组负责数据收集,
另一组负责数据处理,求工作人员甲分到“负责收集数据组”并且工作人员乙分到“负责数据处理组”的概率
P(K2≥k00.0100.0050.001
k06.6357.87910.828
附:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.我国对PM2.5采用如下标准:
PM2.5日均值m(微克/立方米)空气质量等级
m<35一级
35≤m≤75二级
m>75超标
某地4月1日至15日每天的PM2.5监测数据如茎叶图所示.
(Ⅰ)期间刘先生有两天经过此地,这两天此地PM2.5监测数据均未超标.请计算出这两天空气质量恰好有一天为一级的概率;
(Ⅱ)从所给15天的数据中任意抽取三天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知某运动员每次投篮命中的概率都为40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,用1,2,3,4表示命中,用5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:
907    966    191     925     271    932    812    458     569   683
431    257    393     027     556    488    730    113     537   989
据此估计,该运动员三次投篮恰有两次命中的概率为(  )
A.0.35B.0.30C.0.25D.0.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知直线l的方程x=a,a∈R,分别交曲线y=πsinx和y=πcosx不同的两点M,N,则线段|MN|的取值范围是(  )
A.[0,π]B.[0,$\sqrt{2}$π]C.[0,$\sqrt{3}π$]D.[0,2π]

查看答案和解析>>

同步练习册答案