精英家教网 > 高中数学 > 题目详情
18.十七世纪英国著名数学家、物理学家牛顿创立的求方程近似解的牛顿迭代法,相较于二分法更具优势,如图给出的是利用牛顿迭代法求方程x2=6的正的近似解的程序框图,若输入a=2,?=0.02,则输出的结果为(  )
A.3B.2.5C.2.45D.2.4495

分析 由题意,模拟程序的运行过程,依次写出每次循环得到的b,a,z的值,即可得出跳出循环时输出a的值.

解答 解:模拟程序的运行,可得
a=2,?=0.02,
执行循环体,b=2,a=$\frac{5}{2}$,z=$\frac{1}{4}$,
不满足条件z≤?,执行循环体,b=$\frac{5}{2}$,a=$\frac{49}{20}$,z=$\frac{1}{50}$,
满足条件z≤?,退出循环,输出a的值为$\frac{49}{20}$=2.45.
故选:C.

点评 本题主要考查了循环结构的程序框图应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.设a=30.4,b=log318,c=log550,则a,b,c的大小关系是(  )
A.a>b>cB.a>c>bC.b>a>cD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某校为研究学生语言学科的学习情况,现对高二200名学生英语和语文某次考试成绩进行抽样分析.将200名学生编号为001,002,…,200,采用系统抽样的方法等距抽取10名学生,将10名学生的两科成绩(单位:分)绘成折线图如下:

(Ⅰ)若第一段抽取的学生编号是006,写出第五段抽取的学生编号;
(Ⅱ)在这两科成绩差超过20分的学生中随机抽取2人进行访谈,求2人成绩均是语文成绩高于英语成绩的概率;
(Ⅲ)根据折线图,比较该校高二年级学生的语文和英语两科成绩,写出你的结论和理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设集合A={x|x(5-x)>4},B={x|x≤a},若A∪B=B,则a的值可以是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=Asin(ωx+φ)(ω>0,$|φ|<\frac{π}{2}$)的部分图象如图所示,将函数f(x)的图象向右平移$\frac{7π}{24}$个单位后得到函数g(x)的图象,若函数g(x)在区间$[{-\frac{π}{3},θ}]$($θ>-\frac{π}{3}$)上的值域为[-1,2],则θ等于(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{2π}{3}$D.$\frac{7π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.△ABC中,角A,B,C的对边分别为a,b,c,且三角形的面积S=$\frac{\sqrt{3}}{2}$accosB.
(1)求角B的大小;
(2)若a=2$\sqrt{15}$,点D在AB的延长线上,且AD=3,cos∠ADC=$\frac{2}{3}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.(x2-$\frac{2}{x}$+y)5的展开式中,含x3y2的项的系数为(  )
A.60B.-60C.80D.-80

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合A={x|x2-9≤0},B={x|y=ln(-x2+x+12)},则A∩B=(  )
A.{x|-3≤x<3}B.{x|-2<x≤0}C.{x|-2<x<0}D.{x|x<0或x>2且x≠3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.f(x)=$\sqrt{x}$lnx在点(4,f(4))处的切线方程为(  )
A.(ln2+1)x-2y+4ln2-4=0B.(ln4+1)x-2y+7ln4-1=0
C.(ln4+1)x-2y+8ln2-4=0D.(ln2+1)x+2y+7ln2-4=0

查看答案和解析>>

同步练习册答案