精英家教网 > 高中数学 > 题目详情
已知f(x)=
1-x2
|x+2|-2
,则f(x)(  )
A.是奇函数B.是偶函数
C.既是奇函数又是偶函数D.是非奇非偶函数
由于已知f(x)=
1-x2
|x+2|-2
=
1-x2≥0
|x+2|-2≠0
,求得它的定义域为{x|-1≤x≤1,且x≠0},满足关于原点对称,
∴f(x)=
1-x2
x

再根据它满足f(-x)=
1-(-x)2
-x
=-
1-x2
x
=-f(x),故函数为奇函数,
故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

若函数f(x)=1+
m
ex-1
是奇函数,则m的值为(  )
A.0B.
1
2
C.1D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)判断函数f(x)=
2x-1
x-1
在区间(1,+∞)上的单调性,并用定义法给出证明;
(2)判断函数g(x)=x3+
1
x
的奇偶性,并用定义法给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设二次函数f(x)=ax2+bx+1(a、b∈R)
(1)若f(-1)=0,且对任意实数x均有f(x)≥0成立,求实数a、b的值;
(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围;
(3)在(1)的条件下,若f(x)≤m2-2am+2对所有x∈[-1,
2
-1],a∈[-1,1]
恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数f(x)是定义在R上的偶函数,在(-∞,0]上为减函数,且f(4)=0,则使得xf(x)<0的x的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)为偶函数,且x>0时,f(x)=2x+1,则x<0时f(x)等于(  )
A.2x-1B.2-x+1C.-2x+1D.-2-x+1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)设x,y为正数,求(x+y)(
1
x
+
4
y
)
的最小值,并写出取得最小值的条件.
(2)设a>b>c,若
1
a-b
+
1
b-c
n
a-c
恒成立,求n的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数y=f(x),(-
a2
2
≤x≤2)
是奇函数,由实a数的值是(  )
A.-2B.2C.2或-2D.无法确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数若关于的方程有两个不同的实根,则实数的取值范围是________.

查看答案和解析>>

同步练习册答案