如图所示 ,在四面体ABCD中,E、G分别为BC、AB的中点,F在CD上,H在AD上,且有DF∶FC=DH∶HA=2∶3.求证:EF、GH、BD交于一点.
![]()
科目:高中数学 来源: 题型:
.如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D
ABC,如图2所示.
![]()
(1)求证:BC⊥平面ACD;
(2)求几何体D
ABC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
若α,β是两个不同的平面,下列四个条件:①存在一条直线a,a⊥α,a⊥β;②存在一个平面γ,γ⊥α,γ⊥β;③存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥α;④存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α.那么可以是α∥β的充分条件有( )
(A)4个 (B)3个 (C)2个 (D)1个
查看答案和解析>>
科目:高中数学 来源: 题型:
已知m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的有 .
①若m∥α,n∥α,则m∥n;
②若α⊥γ,β⊥γ,则α∥β;
③若m∥α,m∥β,则α∥β;
④若m⊥α,n⊥α,则m∥n.
查看答案和解析>>
科目:高中数学 来源: 题型:
)如图所示,在四棱锥P
ABCD中,PA⊥底面ABCD,且底面各边都相等,M是PC上的一动点,当点M满足 时,平面MBD⊥平面PCD.(只要填写一个你认为是正确的条件即可)
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
已知直线l经过点M(2,3),当圆(x-2)2+(y+3)2=9截l所得弦长最长时,直线l的方程为( )
A.x-2y+4=0
B.3x+4y-18=0
C.y+3=0
D.x-2=0
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com