精英家教网 > 高中数学 > 题目详情
2.已知6x=2,3y=2,求$\frac{1}{x}$-$\frac{1}{y}$的值.

分析 先根据指数式与对数式的转化,再根据对数的运算性质即可求出.

解答 解:∵6x=2,3y=2,
∴x=log62,y=log32,
∴$\frac{1}{x}$=log26,$\frac{1}{y}$=log23,
∴$\frac{1}{x}$-$\frac{1}{y}$=log26-log23=log22=1.

点评 本题考查了对数的定义和对数的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.cos260°cos130°-sin260°sin130°=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.直线(a-1)x-y+a=1(a∈R)圆x+y2+2x+4y-20=0的位置关系是(  )
A.相交B.相切C.相离D.与a的取值有关

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知cos(θ+$\frac{π}{6}$)=$-\frac{\sqrt{3}}{3}$,则sin($\frac{π}{6}$-2θ)=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知x3k=5,y2k=3,求x6k•y4k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若z1=sin2θ+icosθ,z2=cosθ+i$\sqrt{3}$sinθ,当θ=$\frac{π}{6}+2kπ,k∈Z$时,z1=z2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求证:2(sin6θ+cos6θ)-3(sin4θ+cos4θ)+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.正项数列a1,a2,…,am(m≥4,m∈N*)满足:a1,a2,a3,…,ak-1,ak(k<m,k∈N*)是公差为d的等差数列,a1,am,am-1,…,ak+1,ak是公比为2的等比数列.
(1)若a1=d=2,k=8,求数列a1,a2,…,am的所有项的和Sm
(2)若a1=d=2,m<2016,求m的最大值;
(3)是否存在正整数k,满足a1+a2+…+ak-1+ak=3(ak+1+ak+2+…+am-1+am)?若存在,求出k值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.抛物线y2=2px(p>0)与直线y=x+1相切,A(x1,y1),B(x2,y2)(x1≠x2)是抛物线上两个动点,F为抛物线的焦点,且|AF|+|BF|=8.
(Ⅰ)求p的值;
(Ⅱ) 线段AB的垂直平分线l与x轴的交点是否为定点,若是,求出交点坐标,若不是,说明理由;
(Ⅲ)求直线l的斜率的取值范围.

查看答案和解析>>

同步练习册答案