精英家教网 > 高中数学 > 题目详情
19.函数y=$\frac{2-sinθ}{1-cosθ}$的最小值为$\frac{3}{4}$.

分析 由条件利用同角三角函数的基本关系,二倍角公式,把函数的解析式化为y=$\frac{{2sin}^{2}\frac{θ}{2}+{2cos}^{2}\frac{θ}{2}-2sin\frac{θ}{2}cos\frac{θ}{2}}{1-(1-{2cos}^{2}\frac{θ}{2})}$=${(cot\frac{θ}{2}-\frac{1}{2})}^{2}$+$\frac{3}{4}$,再利用二次函数的性质求得它的最小值.

解答 解:y=$\frac{2-sinθ}{1-cosθ}$=$\frac{{2sin}^{2}\frac{θ}{2}+{2cos}^{2}\frac{θ}{2}-2sin\frac{θ}{2}cos\frac{θ}{2}}{1-(1-{2cos}^{2}\frac{θ}{2})}$=$\frac{{tan}^{2}\frac{θ}{2}+1-tan\frac{θ}{2}}{{tan}^{2}\frac{θ}{2}}$=${cot}^{2}\frac{θ}{2}$-cot$\frac{θ}{2}$+1=${(cot\frac{θ}{2}-\frac{1}{2})}^{2}$+$\frac{3}{4}$,
故当cot$\frac{θ}{2}$=$\frac{1}{2}$时,函数y取得最小值为$\frac{3}{4}$,
故答案为:$\frac{3}{4}$.

点评 本题主要考查同角三角函数的基本关系,二倍角公式,二次函数的性质的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.在直四棱柱ABCD-A1B1C1D1中,底面ABCD是正方形,AB=2,AA1=2$\sqrt{3}$,点A、B、C、D在球O的表面上,球O与BA1的另一个交点为E,与CD1的另一个交点为F,且AE⊥BA1,则球O的表面积为8π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在反证法中,否定结论“至多有两个解”的说法中,正确是(  )
A.有一个解B.有两个解C.至少有三个解D.至少有两个解

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,三棱柱A1B1C1-ABC中,已知D,E,F分别为AB,AC,AA1的中点,设三棱锥A-FED的体积为V1,三棱柱A1B1C1-ABC的体积为V2,则V1:V2的值为(  )
A.$\frac{1}{6}$B.$\frac{1}{24}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知圆O:x2+y2=1与x轴负半轴的交点为A,P为直线3x+4y-a=0上一点,过P作圆O的切线,切点为T,若PA=2PT,则a的最大值为$\frac{23}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195],如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第七组的人数为3人.
(Ⅰ)求第六组的频率;
(Ⅱ)若从身高属于第六组和第八组的所有男生中随机抽取2人,记他们的身高分别为x,y,事件E={|x-y|≤5},求事件E的频率P(E);
(Ⅲ)对抽取的50名学生作调查,得到以下2×2列联表:
喜欢打篮球不喜欢打篮球总计
身高超过175cm20626
身高不超175cm51924
总计252550
根据此表判断是否有99.9%的把握认为喜欢打篮球和身高超过175cm有关系.
参考公式::K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=(a+b)(c+d)(a+c)(b+d))
参考数据:
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.7022.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.C53=10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.A是半径为2的圆O内一个定点,P是圆O上的一个动点,线段AP的垂直平分线l与半径OP相交于点Q,则|OQ|•|QA|的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.1-2sin2$\frac{π}{8}$的值等于(  )
A.0B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

同步练习册答案