精英家教网 > 高中数学 > 题目详情
9.在直四棱柱ABCD-A1B1C1D1中,底面ABCD是正方形,AB=2,AA1=2$\sqrt{3}$,点A、B、C、D在球O的表面上,球O与BA1的另一个交点为E,与CD1的另一个交点为F,且AE⊥BA1,则球O的表面积为8π.

分析 连结EF,DF,说明三棱柱ABE-DCF是球O的内接直三棱柱,求出球的半径,即可求解球的表面积.

解答 解:连结EF,DF,易证得BCEF是矩形,
则三棱柱ABE-DCF是球O的内接直三棱柱,
∵AB=2,AA1=2$\sqrt{3}$,
∴tan∠ABA1=$\sqrt{3}$,即∠ABA1=60°,
又AE⊥BA1
∴AE=$\sqrt{3}$,BE=1,
∴球O的半径R=$\frac{1}{2}\sqrt{{2}^{2}+{1}^{2}+(\sqrt{3})^{2}}$=$\sqrt{2}$,
球O表面积为:4πR2=4π$•(\sqrt{2})^{2}$=8π.
故答案为:8π.

点评 本题主要考查球的表面积公式,以及球内接三棱柱的关系,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.如图,在四棱柱ABCD-A1B1C1D1中,底面是ABCD正方形,侧棱AA1⊥底面ABCD.已知AB=1,E为AB上一个动点,当D1E+CE取得最小值$\sqrt{10}$时,三棱锥D1-ADE的外接球表面积为$\frac{40π}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知圆C:x2-2x+y2+4y+1=0,经过点P(3,4)的直线分别与圆C相切于点A、B,则三角形ABC的面积等于$\frac{6}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知P是直线kx+y+4=0(k>0)上一动点,PA、PB是圆C:x2+y2-2y=0的两条切线,切点分别为A、B,若四边形PACB的最小面积为2,则k的值为(  )
A.3B.2C.1D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.因为|cos<$\overrightarrow a$,$\overrightarrow b$>|≤1,所以|$\overrightarrow a$•$\overrightarrow b$|≤|$\overrightarrow a$||$\overrightarrow b$|,当且仅当$\overrightarrow a,\;\;\overrightarrow b$共线时取等号,那么若$\overrightarrow a$=(x1,y1,z1),$\overrightarrow b$=(x2,y2,z2),则有$\sqrt{{{{(x}_{1}•x}_{2})}^{2}{+{(y}_{1}{•y}_{2})}^{2}{+{(z}_{1}{•z}_{2})}^{2}}$≤$\sqrt{{{x}_{1}}^{2}{{+y}_{1}}^{2}{{+z}_{1}}^{2}}$•$\sqrt{{{x}_{2}}^{2}{{+y}_{2}}^{2}{{+z}_{2}}^{2}}$,当且仅当当$\frac{{x}_{1}}{{x}_{2}}$=$\frac{{y}_{1}}{{y}_{2}}$=$\frac{{z}_{1}}{{z}_{2}}$取等号,所以当a2+4b2+9c2=6时,$\frac{1}{a^2}$+$\frac{1}{b^2}$+$\frac{1}{c^2}$的最小值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知sin(π+α)=-$\frac{1}{3}$,则$\frac{sin2α}{cosα}$=(  )
A.$\frac{3}{2}$B.-$\frac{3}{2}$C.-$\frac{2}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.甲、乙两人玩数字游戏,先由甲任想一个数字记为a,再由乙猜甲刚才想的数字,把乙想的数字记为b,且a,b∈{1,2,3,4,5,6},记ξ=|a-b|.
(1)求ξ=1的概率;
(2)若ξ≤1,则称“甲乙心有灵犀”,求“甲乙心有灵犀”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设数列{an}的前n项和为Sn,且Sn=2n-1.数列{bn}满足b1=2,bn+1-2bn=8an
(1)求数列{an}的通项公式.
(2)证明:数列{$\frac{{b}_{n}}{{2}^{n}}$}为等差数列,并求{bn}的通项公式.
(3)求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=$\frac{2-sinθ}{1-cosθ}$的最小值为$\frac{3}{4}$.

查看答案和解析>>

同步练习册答案