精英家教网 > 高中数学 > 题目详情
1.甲、乙两人玩数字游戏,先由甲任想一个数字记为a,再由乙猜甲刚才想的数字,把乙想的数字记为b,且a,b∈{1,2,3,4,5,6},记ξ=|a-b|.
(1)求ξ=1的概率;
(2)若ξ≤1,则称“甲乙心有灵犀”,求“甲乙心有灵犀”的概率.

分析 (1)先求出基本事件总数,再由列举法求出ξ=1包含的基本事件个数,由此能求出ξ=1的概率.
(2)利用列举法求出ξ≤1包含的基本事件个数,由此能求出“甲乙心有灵犀”的概率.

解答 解:(1)由甲任想一个数字记为a,再由乙猜甲刚才想的数字,
把乙想的数字记为b,且a,b∈{1,2,3,4,5,6},
基本事件总数n=6×6=36,
ξ=1包含的基本事件有:(1,2),(2,1),(2,3),(3,2),(3,4),
(4,3),(4,5),(5,4),(5,6),(6,5),共10个,
∴ξ=1的概率P(ξ=1)=$\frac{10}{36}$=$\frac{5}{18}$.
(2)ξ≤1包含的基本事件有:(1,1),(1,2),(2,1),(2,2),
(2,3),(3,2),(3,3),(3,4),(4,3),(4,4),(4,5),
(5,4),(5,5),(5,6),(6,5),(6,6),共16个,
∴“甲乙心有灵犀”的概率p=$\frac{16}{36}$=$\frac{4}{9}$.

点评 本题考查概率的求法,属于基础题,解题时要认真审题,注意列举法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.若直线ax+2by-2=0(a,b>0)始终平分圆x2+y2-4x-2y-8=0的周长,则$\frac{1}{2a}$+$\frac{1}{b}$的最小值为(  )
A.$\frac{1}{2}$B.$\frac{3+2\sqrt{2}}{2}$C.3$\sqrt{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.平面直径坐标系xOy中,动点P到圆(x-2)2+y2=1上的点的最小距离与其到直线x=-1的距离相等,则P点的轨迹方程是(  )
A.y2=8xB.x2=8yC.y2=4xD.x2=4y

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在直四棱柱ABCD-A1B1C1D1中,底面ABCD是正方形,AB=2,AA1=2$\sqrt{3}$,点A、B、C、D在球O的表面上,球O与BA1的另一个交点为E,与CD1的另一个交点为F,且AE⊥BA1,则球O的表面积为8π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.sin15°sin105°-cos15°cos105°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在体积为$\sqrt{3}$的三棱锥S-ABC中,AB=BC=2,∠ABC=120°,SA=SC,且平面SAC⊥平面ABC,若该三棱锥的四个顶点都在同一球面上,则该球的体积为(  )
A.$\frac{20\sqrt{5}}{3}$πB.$\frac{8\sqrt{2}}{3}$πC.20πD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列叙述随机事件的频率与概率的关系中哪个是正确的(  )
A.随着试验次数的增加,频率一般会越来越接近概率
B.频率是客观存在的,与试验次数无关
C.概率是随机的,在试验前不能确定
D.频率就是概率

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在反证法中,否定结论“至多有两个解”的说法中,正确是(  )
A.有一个解B.有两个解C.至少有三个解D.至少有两个解

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.C53=10.

查看答案和解析>>

同步练习册答案