·ÖÎö ÓÉÌâÒâÀûÓÃÁ½¸öÏòÁ¿µÄÊýÁ¿»ý¹«Ê½ÇóµÃ$\overrightarrow{a}•\overrightarrow{b}$ÒÔ¼°|$\overrightarrow a$||$\overrightarrow b$£¬¿ÉµÃ½áÂÛ£»ÔÙÀûÓûù±¾²»µÈʽÇóµÃÒªÇóʽ×ÓµÄ×îСֵ£¬×¢Òâ1µÄ´ú»»£º$\frac{{a}^{2}}{6}$+$\frac{{2b}^{2}}{3}$+$\frac{{3c}^{2}}{2}$=1£®
½â´ð ½â£º¡ß$\overrightarrow{a}•\overrightarrow{b}$=x1•x2 +y1•y2 +z1•z2 =$\sqrt{{{{£¨x}_{1}•x}_{2}£©}^{2}{+{£¨y}_{1}{•y}_{2}£©}^{2}{+{£¨z}_{1}{•z}_{2}£©}^{2}}$£¬|$\overrightarrow a$||$\overrightarrow b$|=$\sqrt{{{x}_{1}}^{2}{{+y}_{1}}^{2}{{+z}_{1}}^{2}}$•$\sqrt{{{x}_{2}}^{2}{{+y}_{2}}^{2}{{+z}_{2}}^{2}}$£¬
ÓÖ¡ß|$\overrightarrow a$•$\overrightarrow b$|¡Ü|$\overrightarrow a$||$\overrightarrow b$|£¬µ±ÇÒ½öµ±$\overrightarrow a£¬\;\;\overrightarrow b$¹²ÏßʱȡµÈºÅ£¬¡à$\sqrt{{{{£¨x}_{1}•x}_{2}£©}^{2}{+{£¨y}_{1}{•y}_{2}£©}^{2}{+{£¨z}_{1}{•z}_{2}£©}^{2}}$¡Ü$\sqrt{{{x}_{1}}^{2}{{+y}_{1}}^{2}{{+z}_{1}}^{2}}$•$\sqrt{{{x}_{2}}^{2}{{+y}_{2}}^{2}{{+z}_{2}}^{2}}$£¬
µ±ÇÒ½öµ±$\frac{{x}_{1}}{{x}_{2}}$=$\frac{{y}_{1}}{{y}_{2}}$=$\frac{{z}_{1}}{{z}_{2}}$ ʱ£¬µÈºÅ³ÉÁ¢£®
¡ßa2+4b2+9c2=6£¬¡à$\frac{{a}^{2}}{6}$+$\frac{{2b}^{2}}{3}$+$\frac{{3c}^{2}}{2}$=1£¬¡à$\frac{1}{a^2}$+$\frac{1}{b^2}$+$\frac{1}{c^2}$=£¨ $\frac{1}{6}$+$\frac{{2b}^{2}}{{3a}^{2}}$+$\frac{{3c}^{2}}{{2a}^{2}}$ £©+£¨$\frac{{a}^{2}}{{6b}^{2}}$+$\frac{2}{3}$+$\frac{{3c}^{2}}{{2b}^{2}}$£©+£¨$\frac{{a}^{2}}{{6c}^{2}}$+$\frac{{2b}^{2}}{{3c}^{2}}$+$\frac{3}{2}$£©
=$\frac{7}{3}$+2$\sqrt{\frac{{2b}^{2}}{{3a}^{2}}•\frac{{a}^{2}}{{6b}^{2}}}$+2$\sqrt{\frac{{3c}^{2}}{{2a}^{2}}•\frac{{a}^{2}}{{6c}^{2}}}$+2$\sqrt{\frac{{3c}^{2}}{{2b}^{2}}•\frac{{2b}^{2}}{{3c}^{2}}}$=6£¬µ±ÇÒ½öµ±$\frac{a}{\sqrt{6}}$=$\frac{b}{\sqrt{\frac{3}{2}}}$=$\frac{c}{\sqrt{\frac{2}{3}}}$=$\frac{1}{3}$ʱ£¬È¡µÈºÅ£®
¹Ê´ð°¸Îª£º$\sqrt{{{{£¨x}_{1}•x}_{2}£©}^{2}{+{£¨y}_{1}{•y}_{2}£©}^{2}{+{£¨z}_{1}{•z}_{2}£©}^{2}}$¡Ü$\sqrt{{{x}_{1}}^{2}{{+y}_{1}}^{2}{{+z}_{1}}^{2}}$•$\sqrt{{{x}_{2}}^{2}{{+y}_{2}}^{2}{{+z}_{2}}^{2}}$£»$\frac{{x}_{1}}{{x}_{2}}$=$\frac{{y}_{1}}{{y}_{2}}$=$\frac{{z}_{1}}{{z}_{2}}$£»6£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁ½¸öÏòÁ¿µÄÊýÁ¿»ýµÄÔËË㣬»ù±¾²»µÈʽµÄÓ¦Óã¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -2 | B£® | $\frac{1}{2}$ | C£® | 2 | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 28¦Ð | B£® | 32¦Ð | C£® | 36¦Ð | D£® | 40¦Ð |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | y2=8x | B£® | x2=8y | C£® | y2=4x | D£® | x2=4y |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | Ëæ×ÅÊÔÑé´ÎÊýµÄÔö¼Ó£¬ÆµÂÊÒ»°ã»áÔ½À´Ô½½Ó½ü¸ÅÂÊ | |
| B£® | ƵÂÊÊǿ͹۴æÔڵģ¬ÓëÊÔÑé´ÎÊýÎÞ¹Ø | |
| C£® | ¸ÅÂÊÊÇËæ»úµÄ£¬ÔÚÊÔÑéǰ²»ÄÜÈ·¶¨ | |
| D£® | ƵÂʾÍÊǸÅÂÊ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com