4£®ÒòΪ|cos£¼$\overrightarrow a$£¬$\overrightarrow b$£¾|¡Ü1£¬ËùÒÔ|$\overrightarrow a$•$\overrightarrow b$|¡Ü|$\overrightarrow a$||$\overrightarrow b$|£¬µ±ÇÒ½öµ±$\overrightarrow a£¬\;\;\overrightarrow b$¹²ÏßʱȡµÈºÅ£¬ÄÇôÈô$\overrightarrow a$=£¨x1£¬y1£¬z1£©£¬$\overrightarrow b$=£¨x2£¬y2£¬z2£©£¬ÔòÓÐ$\sqrt{{{{£¨x}_{1}•x}_{2}£©}^{2}{+{£¨y}_{1}{•y}_{2}£©}^{2}{+{£¨z}_{1}{•z}_{2}£©}^{2}}$¡Ü$\sqrt{{{x}_{1}}^{2}{{+y}_{1}}^{2}{{+z}_{1}}^{2}}$•$\sqrt{{{x}_{2}}^{2}{{+y}_{2}}^{2}{{+z}_{2}}^{2}}$£¬µ±ÇÒ½öµ±µ±$\frac{{x}_{1}}{{x}_{2}}$=$\frac{{y}_{1}}{{y}_{2}}$=$\frac{{z}_{1}}{{z}_{2}}$È¡µÈºÅ£¬ËùÒÔµ±a2+4b2+9c2=6ʱ£¬$\frac{1}{a^2}$+$\frac{1}{b^2}$+$\frac{1}{c^2}$µÄ×îСֵΪ6£®

·ÖÎö ÓÉÌâÒâÀûÓÃÁ½¸öÏòÁ¿µÄÊýÁ¿»ý¹«Ê½ÇóµÃ$\overrightarrow{a}•\overrightarrow{b}$ÒÔ¼°|$\overrightarrow a$||$\overrightarrow b$£¬¿ÉµÃ½áÂÛ£»ÔÙÀûÓûù±¾²»µÈʽÇóµÃÒªÇóʽ×ÓµÄ×îСֵ£¬×¢Òâ1µÄ´ú»»£º$\frac{{a}^{2}}{6}$+$\frac{{2b}^{2}}{3}$+$\frac{{3c}^{2}}{2}$=1£®

½â´ð ½â£º¡ß$\overrightarrow{a}•\overrightarrow{b}$=x1•x2 +y1•y2 +z1•z2 =$\sqrt{{{{£¨x}_{1}•x}_{2}£©}^{2}{+{£¨y}_{1}{•y}_{2}£©}^{2}{+{£¨z}_{1}{•z}_{2}£©}^{2}}$£¬|$\overrightarrow a$||$\overrightarrow b$|=$\sqrt{{{x}_{1}}^{2}{{+y}_{1}}^{2}{{+z}_{1}}^{2}}$•$\sqrt{{{x}_{2}}^{2}{{+y}_{2}}^{2}{{+z}_{2}}^{2}}$£¬
ÓÖ¡ß|$\overrightarrow a$•$\overrightarrow b$|¡Ü|$\overrightarrow a$||$\overrightarrow b$|£¬µ±ÇÒ½öµ±$\overrightarrow a£¬\;\;\overrightarrow b$¹²ÏßʱȡµÈºÅ£¬¡à$\sqrt{{{{£¨x}_{1}•x}_{2}£©}^{2}{+{£¨y}_{1}{•y}_{2}£©}^{2}{+{£¨z}_{1}{•z}_{2}£©}^{2}}$¡Ü$\sqrt{{{x}_{1}}^{2}{{+y}_{1}}^{2}{{+z}_{1}}^{2}}$•$\sqrt{{{x}_{2}}^{2}{{+y}_{2}}^{2}{{+z}_{2}}^{2}}$£¬
 µ±ÇÒ½öµ±$\frac{{x}_{1}}{{x}_{2}}$=$\frac{{y}_{1}}{{y}_{2}}$=$\frac{{z}_{1}}{{z}_{2}}$ Ê±£¬µÈºÅ³ÉÁ¢£®
¡ßa2+4b2+9c2=6£¬¡à$\frac{{a}^{2}}{6}$+$\frac{{2b}^{2}}{3}$+$\frac{{3c}^{2}}{2}$=1£¬¡à$\frac{1}{a^2}$+$\frac{1}{b^2}$+$\frac{1}{c^2}$=£¨ $\frac{1}{6}$+$\frac{{2b}^{2}}{{3a}^{2}}$+$\frac{{3c}^{2}}{{2a}^{2}}$ £©+£¨$\frac{{a}^{2}}{{6b}^{2}}$+$\frac{2}{3}$+$\frac{{3c}^{2}}{{2b}^{2}}$£©+£¨$\frac{{a}^{2}}{{6c}^{2}}$+$\frac{{2b}^{2}}{{3c}^{2}}$+$\frac{3}{2}$£©
=$\frac{7}{3}$+2$\sqrt{\frac{{2b}^{2}}{{3a}^{2}}•\frac{{a}^{2}}{{6b}^{2}}}$+2$\sqrt{\frac{{3c}^{2}}{{2a}^{2}}•\frac{{a}^{2}}{{6c}^{2}}}$+2$\sqrt{\frac{{3c}^{2}}{{2b}^{2}}•\frac{{2b}^{2}}{{3c}^{2}}}$=6£¬µ±ÇÒ½öµ±$\frac{a}{\sqrt{6}}$=$\frac{b}{\sqrt{\frac{3}{2}}}$=$\frac{c}{\sqrt{\frac{2}{3}}}$=$\frac{1}{3}$ʱ£¬È¡µÈºÅ£®
¹Ê´ð°¸Îª£º$\sqrt{{{{£¨x}_{1}•x}_{2}£©}^{2}{+{£¨y}_{1}{•y}_{2}£©}^{2}{+{£¨z}_{1}{•z}_{2}£©}^{2}}$¡Ü$\sqrt{{{x}_{1}}^{2}{{+y}_{1}}^{2}{{+z}_{1}}^{2}}$•$\sqrt{{{x}_{2}}^{2}{{+y}_{2}}^{2}{{+z}_{2}}^{2}}$£»$\frac{{x}_{1}}{{x}_{2}}$=$\frac{{y}_{1}}{{y}_{2}}$=$\frac{{z}_{1}}{{z}_{2}}$£»6£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁ½¸öÏòÁ¿µÄÊýÁ¿»ýµÄÔËË㣬»ù±¾²»µÈʽµÄÓ¦Óã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖª¡ÑC£ºx2+£¨y-1£©2=5£¬µãAΪ¡ÑCÓëxÖḺ°ëÖáµÄ½»µã£¬¹ýA×÷¡ÑCµÄÏÒAB£¬¼ÇÏß¶ÎABµÄÖеãΪM£¬Èô|OA|=|OM|£¬ÔòÖ±ÏßABµÄбÂÊΪ£¨¡¡¡¡£©
A£®-2B£®$\frac{1}{2}$C£®2D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò´Ë¼¸ºÎÌåµÄÌå»ýÊÇ£¨¡¡¡¡£©
A£®28¦ÐB£®32¦ÐC£®36¦ÐD£®40¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Æ½ÃæÖ±¾¶×ø±êϵxOyÖУ¬¶¯µãPµ½Ô²£¨x-2£©2+y2=1ÉϵĵãµÄ×îС¾àÀëÓëÆäµ½Ö±Ïßx=-1µÄ¾àÀëÏàµÈ£¬ÔòPµãµÄ¹ì¼£·½³ÌÊÇ£¨¡¡¡¡£©
A£®y2=8xB£®x2=8yC£®y2=4xD£®x2=4y

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªº¯Êýy=f£¨x£©£¬ÈôÔÚÇø¼äIÄÚÓÐÇÒÖ»ÓÐÒ»¸öʵÊýc£¨c¡ÊI£©£¬Ê¹µÃf£¨c£©=0³ÉÁ¢£¬Ôò³Æº¯Êýy=f£¨x£©ÔÚÇø¼äIÄÚ¾ßÓÐΨһÁãµã£®
£¨1£©ÅжϺ¯Êýf£¨x£©=$\left\{\begin{array}{l}{x^2}-1£¬0¡Üx£¼1\\{log_2}x£¬x¡Ý1\end{array}$ÔÚÇø¼ä£¨0£¬+¡Þ£©ÄÚÊÇ·ñ¾ßÓÐΨһÁãµã£¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©ÒÑÖªÏòÁ¿$\overrightarrow{m}$=£¨$\frac{{\sqrt{3}}}{2}$£¬$\frac{1}{2}$£©£¬$\overrightarrow{n\;}$=£¨sin2x£¬cos2x£©£¬x¡Ê£¨0£¬¦Ð£©£¬Ö¤Ã÷f£¨x£©=$\overrightarrow{m\;}•\overrightarrow{n\;}$+1ÔÚÇø¼ä£¨0£¬¦Ð£©ÄÚ¾ßÓÐΨһÁãµã£»
£¨3£©Èôº¯Êýf£¨x£©=x2+2mx+2mÔÚÇø¼ä£¨-2£¬2£©ÄÚ¾ßÓÐΨһÁãµã£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÔÚÖ±ËÄÀâÖùABCD-A1B1C1D1ÖУ¬µ×ÃæABCDÊÇÕý·½ÐΣ¬AB=2£¬AA1=2$\sqrt{3}$£¬µãA¡¢B¡¢C¡¢DÔÚÇòOµÄ±íÃæÉÏ£¬ÇòOÓëBA1µÄÁíÒ»¸ö½»µãΪE£¬ÓëCD1µÄÁíÒ»¸ö½»µãΪF£¬ÇÒAE¡ÍBA1£¬ÔòÇòOµÄ±íÃæ»ýΪ8¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®sin15¡ãsin105¡ã-cos15¡ãcos105¡ã=$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÏÂÁÐÐðÊöËæ»úʼþµÄƵÂÊÓë¸ÅÂʵĹØÏµÖÐÄĸöÊÇÕýÈ·µÄ£¨¡¡¡¡£©
A£®Ëæ×ÅÊÔÑé´ÎÊýµÄÔö¼Ó£¬ÆµÂÊÒ»°ã»áÔ½À´Ô½½Ó½ü¸ÅÂÊ
B£®ÆµÂÊÊǿ͹۴æÔڵģ¬ÓëÊÔÑé´ÎÊýÎÞ¹Ø
C£®¸ÅÂÊÊÇËæ»úµÄ£¬ÔÚÊÔÑéǰ²»ÄÜÈ·¶¨
D£®ÆµÂʾÍÊǸÅÂÊ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªÔ²O£ºx2+y2=1ÓëxÖḺ°ëÖáµÄ½»µãΪA£¬PΪֱÏß3x+4y-a=0ÉÏÒ»µã£¬¹ýP×÷Ô²OµÄÇÐÏߣ¬ÇеãΪT£¬ÈôPA=2PT£¬ÔòaµÄ×î´óֵΪ$\frac{23}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸