精英家教网 > 高中数学 > 题目详情
14.在平面直角坐标系xOy中,已知⊙C:x2+(y-1)2=5,点A为⊙C与x轴负半轴的交点,过A作⊙C的弦AB,记线段AB的中点为M,若|OA|=|OM|,则直线AB的斜率为(  )
A.-2B.$\frac{1}{2}$C.2D.4

分析 因为圆的半径为$\sqrt{5}$,所以A(-2,0),连接CM,则CM⊥AB,求出圆的直径,在三角形OCM中,利用正弦定理求出sin∠OCM,利用∠OCM与∠OAM互补,即可得出结论.

解答 解:因为圆的半径为$\sqrt{5}$,所以A(-2,0),连接CM,由题意CM⊥AB
因此,四点C,M,A,O共圆,且AC就是该圆的直径,2R=AC=$\sqrt{5}$,
在三角形OCM中,利用正弦定理得2R=$\frac{OM}{sin∠OCM}$,
根据题意,OA=OM=2,
所以,$\sqrt{5}$=$\frac{2}{sin∠OCM}$,
所以sin∠OCM=$\frac{2}{\sqrt{5}}$,tan∠OCM=-2(∠OCM为钝角),
而∠OCM与∠OAM互补,
所以tan∠OAM=2,即直线AB的斜率为2.
故选:C.

点评 本题考查直线与圆的位置关系,考查正弦定理,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若函数f(x)=$\frac{1}{1-x}$,则f[$\frac{1}{f(x)}$]=$\frac{1}{x}$;若x∈[2,4],则f[$\frac{1}{f(x)}$]的值域为$[\frac{1}{4},\frac{1}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.阿基米德(公元前287年-公元前212年),古希腊哲学家、数学家、物理学家,确定了许多物体表面积和体积的计算方法,用杠杆原理计算了特殊圆柱与球的体积和表面积的关系.现在,同学们对这些问题已经很熟悉了.例如:已知圆柱的底面直径与高相等,若该圆柱的侧面积与球的表面积相等,则该圆柱与球的体积之比是(  )
A.1:1B.2:1C.3:2D.π:3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知圆C:x2+y2-2x+4y=0关于直线3x-ay-11=0对称,则圆C中以($\frac{a}{4}$,-$\frac{a}{4}$)为中点的弦长为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知直线y=2x+1与圆x2+y2=4相交于A、B两点,设α、β分别是以OA,OB为终边的角,则sin(α+β)=(  )
A.$\frac{3}{5}$B.$-\frac{3}{5}$C.$\frac{4}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,在四棱柱ABCD-A1B1C1D1中,底面是ABCD正方形,侧棱AA1⊥底面ABCD.已知AB=1,E为AB上一个动点,当D1E+CE取得最小值$\sqrt{10}$时,三棱锥D1-ADE的外接球表面积为$\frac{40π}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.长方体ABCD-A1B1C1D1的8个顶点都在球O的表面上,E为AB的中点,CE=3,cos∠ACE=$\frac{5\sqrt{3}}{9}$,且四边形ABB1A1为正方形,则球O的直径为(  )
A.4B.$\sqrt{51}$C.4或$\sqrt{51}$D.4或5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知正三棱柱(底面是正三角形,侧棱与底面垂直)的体积为3$\sqrt{3}$cm3,所有顶点都在球O的球面上,则球O的表面积的最小值为12πcm2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.因为|cos<$\overrightarrow a$,$\overrightarrow b$>|≤1,所以|$\overrightarrow a$•$\overrightarrow b$|≤|$\overrightarrow a$||$\overrightarrow b$|,当且仅当$\overrightarrow a,\;\;\overrightarrow b$共线时取等号,那么若$\overrightarrow a$=(x1,y1,z1),$\overrightarrow b$=(x2,y2,z2),则有$\sqrt{{{{(x}_{1}•x}_{2})}^{2}{+{(y}_{1}{•y}_{2})}^{2}{+{(z}_{1}{•z}_{2})}^{2}}$≤$\sqrt{{{x}_{1}}^{2}{{+y}_{1}}^{2}{{+z}_{1}}^{2}}$•$\sqrt{{{x}_{2}}^{2}{{+y}_{2}}^{2}{{+z}_{2}}^{2}}$,当且仅当当$\frac{{x}_{1}}{{x}_{2}}$=$\frac{{y}_{1}}{{y}_{2}}$=$\frac{{z}_{1}}{{z}_{2}}$取等号,所以当a2+4b2+9c2=6时,$\frac{1}{a^2}$+$\frac{1}{b^2}$+$\frac{1}{c^2}$的最小值为6.

查看答案和解析>>

同步练习册答案