精英家教网 > 高中数学 > 题目详情
2.已知圆C:x2+y2-2x+4y=0关于直线3x-ay-11=0对称,则圆C中以($\frac{a}{4}$,-$\frac{a}{4}$)为中点的弦长为(  )
A.1B.2C.3D.4

分析 由已知直线3x-ay-11=0过圆心C(1,-2),从而得到a=4,点(1,-1)到圆心C(1,-2)的距离d=1,圆C:x2+y2-2x+4y=0的半径r=$\sqrt{5}$,由此能求出圆C中以($\frac{a}{4}$,-$\frac{a}{4}$)为中点的弦长.

解答 解:∵圆C:x2+y2-2x+4y=0关于直线3x-ay-11=0对称,
∴直线3x-ay-11=0过圆心C(1,-2),
∴3+2a-11=0,解得a=4,
∴($\frac{a}{4}$,-$\frac{a}{4}$)=(1,-1),
点(1,-1)到圆心C(1,-2)的距离d=$\sqrt{(1-1)^{2}+(-1+2)^{2}}$=1,
圆C:x2+y2-2x+4y=0的半径r=$\frac{1}{2}\sqrt{4+16}$=$\sqrt{5}$,
∴圆C中以($\frac{a}{4}$,-$\frac{a}{4}$)为中点的弦长为:2$\sqrt{{r}^{2}-{d}^{2}}$=2$\sqrt{5-1}$=4.
故选:D.

点评 本题考查弦长的求法,是中档题,解题时要认真审题,注意点到直线的距离公式、圆的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设函数f(x)是定义在R上的奇函数,且在区间(-∞,0]上是减函数,判断f(x)在(-∞,+∞)上的单调性,并证明你的判断.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知定义在R上的函数y=f(x-1)是偶函数,且x≤-1时,y=f(x)是减函数,则满足不等式f(2x-1)>f(2)的x的解集为(  )
A.(-∞,-$\frac{3}{2}$)∪($\frac{3}{2}$,+∞)B.(-∞,0)∪($\frac{3}{2}$,+∞)C.(-∞,0)∪(1,+∞)D.($\frac{3}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设正实数x,y,z满足x2-3xy+4y2-z=0,则当$\frac{xy}{z}$取得最大值时,$\frac{2}{x}+\frac{1}{y}-\frac{2}{z}+2$的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知圆心在原点,半径为R的圆与△ABC的边有公共点,其中A(2,-2),B(2,1),C($\frac{1}{2}$,1),则R的最小值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{5}}{5}$C.$\frac{2\sqrt{5}}{5}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,菱形ABCD中,∠ABC=60°,AC与BD相交于点O,AE⊥平面ABCD,CF∥AE,AB=AE=2.
(Ⅰ)求证:BD⊥平面ACFE;
(Ⅱ)当直线FO与平面BED所成角的大小为45°时,求CF的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在平面直角坐标系xOy中,已知⊙C:x2+(y-1)2=5,点A为⊙C与x轴负半轴的交点,过A作⊙C的弦AB,记线段AB的中点为M,若|OA|=|OM|,则直线AB的斜率为(  )
A.-2B.$\frac{1}{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若直线ax+2by-2=0(a,b>0)始终平分圆x2+y2-4x-2y-8=0的周长,则$\frac{1}{2a}$+$\frac{1}{b}$的最小值为(  )
A.$\frac{1}{2}$B.$\frac{3+2\sqrt{2}}{2}$C.3$\sqrt{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.平面直径坐标系xOy中,动点P到圆(x-2)2+y2=1上的点的最小距离与其到直线x=-1的距离相等,则P点的轨迹方程是(  )
A.y2=8xB.x2=8yC.y2=4xD.x2=4y

查看答案和解析>>

同步练习册答案