精英家教网 > 高中数学 > 题目详情
19.如图,在四棱柱ABCD-A1B1C1D1中,底面是ABCD正方形,侧棱AA1⊥底面ABCD.已知AB=1,E为AB上一个动点,当D1E+CE取得最小值$\sqrt{10}$时,三棱锥D1-ADE的外接球表面积为$\frac{40π}{9}$.

分析 画出几何体的图形,连接D1A延长至G使得AG=AD,连接C1B延长至F使得BF=BC,连接EF,D1F,则D1F为D1E+CE的最小值,求出AA1=$\sqrt{3}$,AE=$\frac{2}{3}$.三棱锥D1-ADE补成长方体,长宽高分别为1,$\frac{2}{3}$,$\sqrt{3}$,其对角线长为$\sqrt{1+\frac{4}{9}+3}$=$\frac{2\sqrt{10}}{3}$,可得三棱锥D1-ADE的外接球的半径,即可求出三棱锥D1-ADE的外接球表面积.

解答 解:画出几何体的图形,连接D1A延长至G使得AG=AD
连接C1B延长至F使得BF=BC,连接EF,则ABFG为正方形,
连接D1F,则D1F为D1E+CE的最小值:D1F=$\sqrt{{1}^{2}+(\sqrt{1+A{{A}_{1}}^{2}}+1)^{2}}$=$\sqrt{10}$,
∴AA1=$\sqrt{3}$,AE=$\frac{2}{3}$.
三棱锥D1-ADE补成长方体,长宽高分别为1,$\frac{2}{3}$,$\sqrt{3}$,其对角线长为$\sqrt{1+\frac{4}{9}+3}$=$\frac{2\sqrt{10}}{3}$,
∴三棱锥D1-ADE的外接球的半径为$\frac{\sqrt{10}}{3}$,
∴三棱锥D1-ADE的外接球表面积为为$4π•\frac{10}{9}$=$\frac{40π}{9}$.
故答案为:$\frac{40π}{9}$.

点评 本题是中档题,考查正四棱柱表面距离的最小值问题,考查折叠与展开的关系,能够转化为平面上两点的距离是解题的关键,考查空间想象能力,计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.函数f(x)=1n(x2-2x-3)的单调增区间记为集合A,关于原点对称的区间[a-5,a2-5a]记为集合B,求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设正实数x,y,z满足x2-3xy+4y2-z=0,则当$\frac{xy}{z}$取得最大值时,$\frac{2}{x}+\frac{1}{y}-\frac{2}{z}+2$的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,菱形ABCD中,∠ABC=60°,AC与BD相交于点O,AE⊥平面ABCD,CF∥AE,AB=AE=2.
(Ⅰ)求证:BD⊥平面ACFE;
(Ⅱ)当直线FO与平面BED所成角的大小为45°时,求CF的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在平面直角坐标系xOy中,已知⊙C:x2+(y-1)2=5,点A为⊙C与x轴负半轴的交点,过A作⊙C的弦AB,记线段AB的中点为M,若|OA|=|OM|,则直线AB的斜率为(  )
A.-2B.$\frac{1}{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.过点P(l,-$\sqrt{3}$)的直线l截圆x2+y2=5所得弦长不小于4,则直线l的倾斜角的取值范围是(  )
A.[$\frac{π}{6}$,$\frac{π}{3}$]B.[$\frac{π}{3}$,$\frac{2π}{3}$]C.[$\frac{π}{2}$,$\frac{5π}{6}$]D.[$\frac{2π}{3}$,π]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若直线ax+2by-2=0(a,b>0)始终平分圆x2+y2-4x-2y-8=0的周长,则$\frac{1}{2a}$+$\frac{1}{b}$的最小值为(  )
A.$\frac{1}{2}$B.$\frac{3+2\sqrt{2}}{2}$C.3$\sqrt{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若存在α,β∈R,使得$\left\{{\begin{array}{l}{t={{cos}^3}β+\frac{α}{2}cosβ}\\{α≤t≤α-5cosβ}\end{array}}\right.$,则实数t的取值范围是[$-\frac{2}{3}$,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在直四棱柱ABCD-A1B1C1D1中,底面ABCD是正方形,AB=2,AA1=2$\sqrt{3}$,点A、B、C、D在球O的表面上,球O与BA1的另一个交点为E,与CD1的另一个交点为F,且AE⊥BA1,则球O的表面积为8π.

查看答案和解析>>

同步练习册答案