精英家教网 > 高中数学 > 题目详情
6.已知向量$\overrightarrow{OA}$=(3,-4),$\overrightarrow{OB}$=(6,-3),$\overrightarrow{OC}$=(5-m,-3-m),若A,B,C三点共线,则实数m的值$\frac{1}{2}$.

分析 利用三点共线,通过坐标运算求出m的值.

解答 解:∵向量$\overrightarrow{OA}$=(3,-4),$\overrightarrow{OB}$=(6,-3),$\overrightarrow{OC}$=(5-m,-3-m),
∴$\overrightarrow{AB}$=(3,1),$\overrightarrow{AC}$=(2-m,1-m),
∵A、B、C三点共线,
∴$\overrightarrow{AB}$∥$\overrightarrow{AC}$
∴3(1-m)=2-m
解得m=$\frac{1}{2}$
故答案为:$\frac{1}{2}$.

点评 本题考查三点共线,向量的坐标运算,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.△ABC的角A,B,C所对的边分别为a,b,c,若cosA=$\frac{7}{8}$,c-a=2,b=2,则a=(  )
A.2B.$\frac{5}{2}$C.3D.$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如表:
ωx+φ0$\frac{π}{2}$π$\frac{3π}{2}$
xa$\frac{π}{3}$b$\frac{5π}{6}$c
f(x)05d-50
(I)请直接写出上表中a,b,c,d的值,并求函数f(x)的解析式;
(II)把y=f(x)图象上所有点向右平移θ(θ>0)个单位长度,所得图象恰好关于点($\frac{5π}{12}$,0)对称,求θ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若曲线${C}_{1}(x-1)^{2}+{y}^{2}=1$与曲线C2:y(y-mx-m)=0有4个不同的交点,则实数m的取值范围是(  )
A.(-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)B.(-$\frac{\sqrt{3}}{3},0$)∪(0,$\frac{\sqrt{3}}{3}$)C.[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$]D.(-∞,-$\frac{\sqrt{3}}{3}$)∪($\frac{\sqrt{3}}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知$\frac{sin(\frac{π}{2}-α)+sin(-π-α)}{3cos(2π+α)+cos(\frac{3π}{2}-α)}=3$.
(I)求$\frac{sinα-3cosα}{sinα+cosα}$的值;
(II)若圆C的圆心在x轴上,圆心到直线y=tanα•x的距离为$2\sqrt{5}$且圆C被直线y=tanα•x所截弦长为8,求圆C的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若集合A=$\left\{{x|y=\sqrt{x}}\right\}$,B={x|y=ex},则A∩B=(  )
A.(0,+∞)B.[0,+∞)C.(1,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知数列{an}的前n项和为Sn,Sn=4n2+2n,则此数列的通项公式为(  )
A.an=2n-2B.an=8n-2C.an=2n-1D.an=n2-n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某校数学课外小组在坐标纸上为学校的一块空地设计植树方案为:第K棵树种植在点Pk(xk,yk)处,其中x1=1,y1=1,当K≥2时,$\left\{\begin{array}{l}{x_k}={x_{k-1}}+1-5[T(\frac{k-1}{5})-T(\frac{k-2}{5})]\\{y_k}={y_{k-1}}+T(\frac{k-1}{5})-T(\frac{k-2}{5})\end{array}\right.$T(a)表示非负实数a的整数部分,例如T(2.6)=2,T(0.2)=0.按此方案第2016棵树种植点的坐标应为(1,404).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=$\left\{{\begin{array}{l}{{a^x},x>1}\\{(4-\frac{a}{2})x+2,x≤1}\end{array}}$是R上的增函数,则实数a的取值范围(  )
A.[4,8 )B.(4,8)C.(1,8)D.(1,+∞)

查看答案和解析>>

同步练习册答案