精英家教网 > 高中数学 > 题目详情
14.若曲线${C}_{1}(x-1)^{2}+{y}^{2}=1$与曲线C2:y(y-mx-m)=0有4个不同的交点,则实数m的取值范围是(  )
A.(-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)B.(-$\frac{\sqrt{3}}{3},0$)∪(0,$\frac{\sqrt{3}}{3}$)C.[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$]D.(-∞,-$\frac{\sqrt{3}}{3}$)∪($\frac{\sqrt{3}}{3}$,+∞)

分析 若曲线${C}_{1}(x-1)^{2}+{y}^{2}=1$与曲线C2:y(y-mx-m)=0有4个不同的交点,则y-mx-m=0与曲线${C}_{1}(x-1)^{2}+{y}^{2}=1$有两个交点,且这两个交点不在x轴上,进而得到答案.

解答 解:若曲线${C}_{1}(x-1)^{2}+{y}^{2}=1$与曲线C2:y(y-mx-m)=0有4个不同的交点,
则y-mx-m=0与曲线${C}_{1}(x-1)^{2}+{y}^{2}=1$有两个交点,且这两个交点不在x轴上,
故$\frac{|-2m|}{\sqrt{1+{m}^{2}}}<1$,且m≠0,
解得:m∈(-$\frac{\sqrt{3}}{3},0$)∪(0,$\frac{\sqrt{3}}{3}$),
故选:B.

点评 本题考查的知识点是直线与圆的位置关系,点到直线的距离公式,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.某家电专卖店试销A,B,C三种新型空调,销售情况记录如表:
第一周第二周第三周第四周第五周
A型数量(台)101015A4A5
B型数量(台)101213B4B5
C型数量(台)15812C4C5
(Ⅰ)为跟踪调查空调的使用情况,根据销售记录,从该家电专卖店前三周售出的所有空调中随机抽取一台,求抽到的空调“是B型空调或是第一周售出空调”的概率;
(Ⅱ)为跟踪调查空调的使用情况,根据销售记录,从该家电专卖店第二周和第三周售出的空调中分别随机抽取一台,求抽取的两台空调中A型空调台数X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设等比数列{an}的前n项和为Sn,已知$\frac{{S}_{4}}{{S}_{2}}$=3,则2a2-a4的值是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知sin($\frac{π}{4}-α$)=$\frac{\sqrt{2}}{2}$,则cos($\frac{π}{4}+α$)的值是$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知角α的终边过点P(-3m,4m)(m<0),则2sinα+cosα的值是(  )
A.1B.$\frac{2}{5}$C.-$\frac{2}{5}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(I)已知$cos(π+α)=-\frac{1}{2}$,α为第一象限角,求$cos(\frac{π}{2}+α)$的值;
(II)已知$cos(\frac{π}{6}-β)=\frac{1}{3}$,求$cos(\frac{5π}{6}+β)•sin(\frac{2π}{3}-β)$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知向量$\overrightarrow{OA}$=(3,-4),$\overrightarrow{OB}$=(6,-3),$\overrightarrow{OC}$=(5-m,-3-m),若A,B,C三点共线,则实数m的值$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.全集U=R,若集合A={x|3≤x<10},B={x|2<x≤7},则
(1)求A∩B,A∪B;
(2)若集合C={x|x>a},A⊆C,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.双曲线$\frac{x^2}{{25-{m^2}}}$-$\frac{y^2}{{11+{m^2}}}$=1(0<m<5)的焦距为(  )
A.6B.12C.36D.$2\sqrt{14-2{m^2}}$

查看答案和解析>>

同步练习册答案