精英家教网 > 高中数学 > 题目详情
3.全集U=R,若集合A={x|3≤x<10},B={x|2<x≤7},则
(1)求A∩B,A∪B;
(2)若集合C={x|x>a},A⊆C,求a的取值范围.

分析 (1)根据交集与并集的定义,写出A∩B与A∪B即可;
(2)根据子集的定义即可得出a的取值范围.

解答 解:(1)集合A={x|3≤x<10},B={x|2<x≤7},
所以A∩B={x|3≤x≤7},
A∪B={x|2<x<10};
(2)集合C={x|x>a},且A⊆C,
所以a<3,
即a的取值范围是a<3.

点评 本题考查了集合的定义与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设f(x)=$\left\{\begin{array}{l}1-\sqrt{x}\\{2^x}\end{array}$$\begin{array}{l}(x≥0)\\(x<0)\end{array}$,则f[f(-2)]=(  )
A.-1B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若曲线${C}_{1}(x-1)^{2}+{y}^{2}=1$与曲线C2:y(y-mx-m)=0有4个不同的交点,则实数m的取值范围是(  )
A.(-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$)B.(-$\frac{\sqrt{3}}{3},0$)∪(0,$\frac{\sqrt{3}}{3}$)C.[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$]D.(-∞,-$\frac{\sqrt{3}}{3}$)∪($\frac{\sqrt{3}}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若集合A=$\left\{{x|y=\sqrt{x}}\right\}$,B={x|y=ex},则A∩B=(  )
A.(0,+∞)B.[0,+∞)C.(1,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知数列{an}的前n项和为Sn,Sn=4n2+2n,则此数列的通项公式为(  )
A.an=2n-2B.an=8n-2C.an=2n-1D.an=n2-n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)=$\frac{f(b)-f(a)}{b-a}$,则称函数y=f(x)是[a,b]上的“平均值函数”,x0是它的一个均值点,现有函数f(x)=ex+mx是区间[0,1]上的“平均值函数”,则实数m的取值范围是(  )
A.(-∞,2-e]B.(-∞,2-e)C.[2-e,+∞)D.(2-e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某校数学课外小组在坐标纸上为学校的一块空地设计植树方案为:第K棵树种植在点Pk(xk,yk)处,其中x1=1,y1=1,当K≥2时,$\left\{\begin{array}{l}{x_k}={x_{k-1}}+1-5[T(\frac{k-1}{5})-T(\frac{k-2}{5})]\\{y_k}={y_{k-1}}+T(\frac{k-1}{5})-T(\frac{k-2}{5})\end{array}\right.$T(a)表示非负实数a的整数部分,例如T(2.6)=2,T(0.2)=0.按此方案第2016棵树种植点的坐标应为(1,404).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求y=3x+$\frac{4}{x}$(x<0)的最大值,并求y取最大值时相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x+1)=$\frac{1}{f(x)}$.当x∈[0,1)时,f(x)=2x+1.给出下列命题:
①f(2013)+f(-2014)=$\frac{5}{2}$;             
②f(x)是定义域上周期为2的周期函数;
③直线y=8x与函数y=f(x)图象只有1个交点; 
④y=f(x)的值域为($\frac{1}{4}$,$\frac{1}{2}$]∪[2,4)
其中正确命题的序号为:①③④.

查看答案和解析>>

同步练习册答案