分析 ①②,当x≥0时,f(x+1)=$\frac{1}{f(x)}$⇒T=2,且函数f(x)是定义在R上的偶函数,f(2013)+f(-2014)=f(2013)+f(2014)=f(1)+f(0)=$\frac{1}{f(0)}$+f(0)=$\frac{5}{2}$,
③,直线y=8x在区间[0,1)递增,值域为[0,8),函数y=f(x)在区间[0,1)递增,值域为[0,4),依据图象可得只有1个交点;
④,当x∈[1,2)时,x-1∈[0,1),f(x)=$\frac{1}{f(x-1)}$=$\frac{1}{{2}^{x}}$.
解答 解:当x≥0时,f(x+1)=$\frac{1}{f(x)}$⇒T=2,且函数f(x)是定义在R上的偶函数,∴f(2013)+f(-2014)=f(2013)+f(2014)=f(1)+f(0)=$\frac{1}{f(0)}$+f(0)=$\frac{5}{2}$,
①故正确,②错;对于③,直线y=8x在区间[0,1)递增,值域为[0,8),函数y=f(x)在区间[0,1)递增,值域为[0,4),依据图象可得只有1个交点,故正确;
对于④,当x∈[1,2)时,x-1∈[0,1),f(x)=$\frac{1}{f(x-1)}$=$\frac{1}{{2}^{x}}$∈($\frac{1}{4},\frac{1}{2}$],故正确.
故答案:①③④.
点评 本题考查了函数的奇偶性、周期、值域等基本性质,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 12 | C. | 36 | D. | $2\sqrt{14-2{m^2}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(-1)≥f(2) | B. | f(-1)≤f(2) | C. | f(-1)>f(2) | D. | f(-1)<f(2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| X | 1 | 2 | 3 | 4 |
| Y | 51 | 48 | 45 | 42 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=\sqrt{2}x$ | B. | $y=\sqrt{3}x$ | C. | y=2x | D. | y=4x |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com