精英家教网 > 高中数学 > 题目详情
10.在△ABC中,内角A,B,C所对的边a,b,c且a>c,已知c•acosB=2,cosB=$\frac{1}{3}$,b=3,求:
(1)a和c的值;
(2)cos(B-C)的值.

分析 (Ⅰ)由c•acosB=2,得ac=6.再由余弦定理能求出结果.
(Ⅱ)在△ABC中,求出sinB,由正弦定理,求出sinC,由此能求出cos(B-C)的值.

解答 解:(Ⅰ)由c•acosB=2,$cosB=\frac{1}{3}$得,所以ac=6.
由余弦定理,得a2+c2=b2+2accosB.
又b=3,所以a2+c2=9+2×2=13.
解$\left\{\begin{array}{l}ac=6\\{a^2}+{c^2}=13\end{array}\right.$,得a=2,c=3或a=3,c=2.
因为a>c,∴a=3,c=2.
(Ⅱ)在△ABC中,$sinB=\sqrt{1-{{cos}^2}B}=\sqrt{1-{{({\frac{1}{3}})}^2}}=\frac{{2\sqrt{2}}}{3}$.
由正弦定理,得$sinC=\frac{c}{b}sinB=\frac{2}{3}•\frac{{2\sqrt{2}}}{3}=\frac{{4\sqrt{2}}}{9}$,
又因为a=b>c,所以C为锐角,
因此$cosC=\sqrt{1-{{sin}^2}C}=\sqrt{1-{{({\frac{{4\sqrt{2}}}{9}})}^2}}=\frac{7}{9}$.
于是$cos({B-C})=cosBcosC+sinBsinC=\frac{1}{3}•\frac{7}{9}+\frac{{2\sqrt{2}}}{3}•\frac{{4\sqrt{2}}}{9}=\frac{23}{27}$.

点评 本题考查三角形的边长的求法,考查两角差的余弦值的求法,是中档题,解题时要认真审题,注意正弦定理、余弦定理、三角函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.某校数学课外小组在坐标纸上为学校的一块空地设计植树方案为:第K棵树种植在点Pk(xk,yk)处,其中x1=1,y1=1,当K≥2时,$\left\{\begin{array}{l}{x_k}={x_{k-1}}+1-5[T(\frac{k-1}{5})-T(\frac{k-2}{5})]\\{y_k}={y_{k-1}}+T(\frac{k-1}{5})-T(\frac{k-2}{5})\end{array}\right.$T(a)表示非负实数a的整数部分,例如T(2.6)=2,T(0.2)=0.按此方案第2016棵树种植点的坐标应为(1,404).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知f(x)=$\left\{{\begin{array}{l}{{a^x},x>1}\\{(4-\frac{a}{2})x+2,x≤1}\end{array}}$是R上的增函数,则实数a的取值范围(  )
A.[4,8 )B.(4,8)C.(1,8)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x+1)=$\frac{1}{f(x)}$.当x∈[0,1)时,f(x)=2x+1.给出下列命题:
①f(2013)+f(-2014)=$\frac{5}{2}$;             
②f(x)是定义域上周期为2的周期函数;
③直线y=8x与函数y=f(x)图象只有1个交点; 
④y=f(x)的值域为($\frac{1}{4}$,$\frac{1}{2}$]∪[2,4)
其中正确命题的序号为:①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数f(x)=$\frac{x}{{\sqrt{a{x^2}+ax+1}}}$的定义域为R,则实数a的取值范围是0≤a<4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$(m+1)x2+2(m-1)x在(0,4)上无极值,则m=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|-3≤x<2},B={x|x≥m},且A⊆B,则实数m的取值范围是(  )
A.{m|m≥-3}B.{m|m≤-3}C.{m|m≤2}D.{m|m≥2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,内角A,B,C的对边分别是a,b,c,若bsinB-asinA=$\frac{3}{2}$asinC,且△ABC的面积为a2sinB,则cosB=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=$\frac{{{{(x+1)}^2}+asinx}}{{{x^2}+1}}$+3(a∈R),f(ln(log25))=5,则f(ln(log52))=(  )
A.-5B.-1C.3D.4

查看答案和解析>>

同步练习册答案