精英家教网 > 高中数学 > 题目详情
1.已知$\frac{sin(\frac{π}{2}-α)+sin(-π-α)}{3cos(2π+α)+cos(\frac{3π}{2}-α)}=3$.
(I)求$\frac{sinα-3cosα}{sinα+cosα}$的值;
(II)若圆C的圆心在x轴上,圆心到直线y=tanα•x的距离为$2\sqrt{5}$且圆C被直线y=tanα•x所截弦长为8,求圆C的标准方程.

分析 (I)利用诱导公式对已知等式进行化简得到$\frac{cosα+sinα}{3cosα-sinα}$=3,然后由同角三角函数关系求得tanα=2,代入所求的代数式进行求值;
(II)利用圆心,半径(圆心到直线y=2x的距离为2$\sqrt{5}$)、半弦长、弦心距的勾股定理关系,求出圆心坐标,然后求出圆C的标准方程.

解答 解:(I)∵知$\frac{sin(\frac{π}{2}-α)+sin(-π-α)}{3cos(2π+α)+cos(\frac{3π}{2}-α)}=3$,
∴$\frac{sin(\frac{π}{2}-α)+sin(-π-α)}{3cos(2π+α)+cos(\frac{3π}{2}-α)}$=$\frac{cosα+sinα}{3cosα-sinα}$=3.
∴cosα+sinα=9cosα-3sinα,
∴tanα=2,
∴$\frac{sinα-3cosα}{sinα+cosα}$=$\frac{tanα-3}{tanα+1}$=$\frac{2-3}{2+1}$=-$\frac{1}{3}$;
(II)设圆C的圆心坐标为(a,0),由圆心到直线y=2x的距离为2$\sqrt{5}$,
得$\frac{|2a|}{\sqrt{5}}$=2$\sqrt{5}$,
∴a=±5.
又圆C被直线y=2x所截弦长为8,
故圆C的半径r=$\sqrt{(2\sqrt{5})^{2}+{4}^{2}}$=6,
故圆C的标准方程为(x±5)2+y2=36.

点评 本题考查了同角三角函数基本关系的应用、点到直线的距离、直线与圆的关系,考查了同学们解决直线与圆问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知{an}为等差数列,其前n项和为Sn,若S9=12,则下列各式一定为定值的是(  )
A.a3+a8B.a10C.a3+a5+a7D.a2+a7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设集合A={1,2,3,5},B={2,4,6},则A∩B=(  )
A.{2}B.{4,6}C.{1,3,5}D.{4,6,7,8}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知角α的终边过点P(-3m,4m)(m<0),则2sinα+cosα的值是(  )
A.1B.$\frac{2}{5}$C.-$\frac{2}{5}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若角α的终边在直线y=x上,则角α用弧度制可表示为α=kπ+$\frac{π}{4}$,k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知向量$\overrightarrow{OA}$=(3,-4),$\overrightarrow{OB}$=(6,-3),$\overrightarrow{OC}$=(5-m,-3-m),若A,B,C三点共线,则实数m的值$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.为了得到函数=4sin(2x+$\frac{π}{5}$),x∈R的图象,只需把函数y=4sin(x+$\frac{π}{5}$),x∈R的图象上所有点的(  )
A.横坐标伸长到原来的2倍,纵坐标不变
B.纵坐标伸长到原来的2倍,横坐标不变
C.横坐标缩短到原来的$\frac{1}{2}$倍,纵坐标不变
D.纵坐标缩短到原来的$\frac{1}{2}$倍,横坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列函数中,既不是奇函数,也不是偶函数的是(  )
A.y=x+sin2xB.y=2x+$\frac{1}{{2}^{x}}$C.y=x2+sinxD.y=x2-cosx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知{an}是公差为3的等差数列,数列{bn}满足b1=1,b2=$\frac{1}{3}$,anbn+1+bn+1=nbn,.
(1)求a1的值并求数列{an}的通项公式;
(2)求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案