精英家教网 > 高中数学 > 题目详情
(2009•聊城二模)已知a是使表达式2x+1>42-x成立的最小整数,则方程(1-|2x-1|)=ax-1实数根的个数为(  )
分析:先解指数不等式,解出自变量x的取值范围.
解答:解:由2x+1>42-x,得2x+1>22(2-x)
解得x+1>2(2-x),即x>1,
所以a=2.
即方程(1-|2x-1|)=ax-1为(1-|2x-1|)=2x-1,
所以2-|2x-1|=2x
设y=2-|2x-1|,y=2x
分别在坐标系中作出两个函数的图象,由图象可知两函数的交点个数为2个.
即方程(1-|2x-1|)=ax-1实数根的个数为2个.
故选C.
点评:本题主要考查指数不等式的解法以及函数与方程之间的关系,利用数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•聊城二模)已知函数f(x)=lnx+
1-xax
,其中a为大于零的常数.
(1)若函数f(x)在区间[1,+∞)内单调递增,求a的取值范围;
(2)求函数f(x)在区间[1,2]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•聊城二模)在R上定义运算△:x△y=x(1-y) 若不等式(x-a)△(x+a)<1,对任意实数x恒成立,则实数a的取值范围是
(-
1
2
3
2
)
(-
1
2
3
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•聊城二模)若sin(
π
6
-α)=
1
3
,则cos(
3
+2α)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•聊城二模)已知关于x的不等式|3x-1|<a有唯一的整数解,则方程(1-|2x-1|)ax=1实数根的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•聊城二模)已知函数f(x)=lnx+
1-x
ax
,其中a
为大于零的常数.
(1)若函数f(x)在区间[1,+∞)内调递增,求a的取值范围;
(2)求函数f(x)在区间[1,2]上的最小值;
(3)求证:对于任意的n∈N*,且n>1时,都有lnn>
1
2
+
1
3
+…+
1
n
成立.

查看答案和解析>>

同步练习册答案