【题目】已知数列
的前
项和为
,且满足
,
,设
,则以下四个命题:(1)
是等差数列;(2)
中最大项是
;(3)
通项公式是
;(4)
.其中真命题的序号是______.
科目:高中数学 来源: 题型:
【题目】已知向量
=(2sin x,
cos x),
=(-sin x,2sin x),函数f(x)=
·![]()
(1)求f(x)的单调递增区间;
(2)在△ABC中,a,b,c分别是角A,B,C的对边,且f(C)=1,c=1,ab=2
,且a>b,求a,b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年,随着中国第一款5G手机投入市场,5G技术已经进入高速发展阶段.已知某5G手机生产厂家通过数据分析,得到如下规律:每生产手机
万台,其总成本为
,其中固定成本为800万元,并且每生产1万台的生产成本为1000万元(总成本=固定成本+生产成本),销售收入
万元满足![]()
(1)将利润
表示为产量
万台的函数;
(2)当产量
为何值时,公司所获利润最大?最大利润为多少万元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】市政府为了节约用水,调查了100位居民某年的月均用水量(单位:
),频数分布如下:
分组 |
|
|
|
|
|
|
|
|
|
频数 | 4 | 8 | 15 | 22 | 25 | 14 | 6 | 4 | 2 |
![]()
(1)根据所给数据将频率分布直图补充完整(不必说明理由);
(2)根据频率分布直方图估计本市居民月均用水量的中位数;
(3)根据频率分布直方图估计本市居民月均用水量的平均数(同一组数据由该组区间的中点值作为代表).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两点
,
,给出下列曲线方程:(1)
;(2)
;(3)
;(4)
,在曲线上存在点
满足
的所有曲线是( )
A.(1)(2)(3)(4)B.(2)(3)
C.(1)(4)D.(2)(3)(4)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若数列
同时满足:①对于任意的正整数
,
恒成立;②对于给定的正整数
,
对于任意的正整数
恒成立,则称数列
是“
数列”.
(1)已知
判断数列
是否为“
数列”,并说明理由;
(2)已知数列
是“
数列”,且存在整数
,使得
,
,
,
成等差数列,证明:
是等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了50人就该城市共享单车的推行情况进行问卷调査,并将问卷中的这50人根据其满意度评分值(百分制)按照
分成5组,请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:
频率分布表
组别 | 分组 | 频数 | 频率 |
第1组 |
| 8 | 0.16 |
第2组 |
|
| ▆ |
第3组 |
| 20 | 0.40 |
第4组 |
| ▆ | 0.08 |
第5组 |
| 2 |
|
合计 | ▆ | ▆ |
![]()
(1)求
的值;
(2)若在满意度评分值为
的人中随机抽取2人进行座谈,求所抽取的2人中至少一人来自第5组的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com