精英家教网 > 高中数学 > 题目详情

【题目】已知数列的前项和为,且满足,设,则以下四个命题:(1是等差数列;(2中最大项是;(3通项公式是;(4.其中真命题的序号是______.

【答案】1)(2)(4

【解析】

运用数列的递推式,结合等差数列的定义和通项公式,即可判断(1),(3),由数列的单调性可判断(2),(4).

an+2Sn1Sn0n2),S1

可得SnSn1=﹣2Sn1Sn0n2),即有2

{}是首项、公差均为2的等差数列,故(1)正确;

可得2+2n1)=2n,即Sn

可得a1S1n2时,an,对n1不成立,故(3)错误;

ann2递增,当n→∞时,可得an0,故(4)正确;

bnnan,可得n2时,bn递增,且bn0

{bn}中最大项是b1,故(2)正确.

故答案为:(1)(2)(4).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若运行如图所示的程序框图,输出的的值为127,则输入的正整数的所有可能取值的个数为( )

A. 8 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量=(2sin xcos x),=(-sin x,2sin x),函数fx)=·

1)求fx)的单调递增区间;

2)在△ABC中,abc分别是角ABC的对边,且fC)=1c1ab2,且a>b,求ab的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年,随着中国第一款5G手机投入市场,5G技术已经进入高速发展阶段.已知某5G手机生产厂家通过数据分析,得到如下规律:每生产手机万台,其总成本为,其中固定成本为800万元,并且每生产1万台的生产成本为1000万元(总成本=固定成本+生产成本),销售收入万元满足

1)将利润表示为产量万台的函数;

2)当产量为何值时,公司所获利润最大?最大利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市政府为了节约用水,调查了100位居民某年的月均用水量(单位:),频数分布如下:

分组

频数

4

8

15

22

25

14

6

4

2

(1)根据所给数据将频率分布直图补充完整(不必说明理由);

(2)根据频率分布直方图估计本市居民月均用水量的中位数;

(3)根据频率分布直方图估计本市居民月均用水量的平均数(同一组数据由该组区间的中点值作为代表).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形的两条对角线相交于点 边所在直线的方程为,点边所在的直线上.

(Ⅰ)求边所在直线的方程;

(Ⅱ)求矩形外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两点,给出下列曲线方程:(1;(2;(3;(4,在曲线上存在点满足的所有曲线是(

A.1)(2)(3)(4B.2)(3

C.1)(4D.2)(3)(4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列同时满足:①对于任意的正整数 恒成立;②对于给定的正整数 对于任意的正整数恒成立,则称数列是“数列”.

(1)已知判断数列是否为“数列”,并说明理由;

(2)已知数列是“数列”,且存在整数,使得 成等差数列,证明: 是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托互联网+”,符合低碳出行的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了50人就该城市共享单车的推行情况进行问卷调査,并将问卷中的这50人根据其满意度评分值(百分制)按照分成5组,请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:

频率分布表

组别

分组

频数

频率

1

8

0.16

2

3

20

0.40

4

0.08

5

2

合计

1)求的值;

2)若在满意度评分值为的人中随机抽取2人进行座谈,求所抽取的2人中至少一人来自第5组的概率.

查看答案和解析>>

同步练习册答案