精英家教网 > 高中数学 > 题目详情
13.三棱柱ABC-A1B1C1中,AA1与AC、AB所成角均为60°,∠BAC=90°,且AB=AC=AA1=1,则A1B与AC1所成角的余弦值为$\frac{\sqrt{3}}{3}$.

分析 由题意画出图形,通过补形得到A1B与AC1所成角的补角,求其余弦值后可得A1B与AC1所成角的余弦值.

解答 解:如图,
∵AA1与AC、AB所成角均为60°,AB=AC=AA1=1,
∴A1B=1,$A{C}_{1}=\sqrt{{1}^{2}+{1}^{2}-2×1×1×cos120°}$=$\sqrt{3}$,
在三棱柱ABC-A1B1C1下面补上一个完全相同的三棱柱EFG-ABC,
连接C1F,由题意可得四边形FB1C1G为长方形,且$F{B}_{1}=2,{B}_{1}{C}_{1}=\sqrt{2}$,
∴${C}_{1}F=\sqrt{{2}^{2}+(\sqrt{2})^{2}}=\sqrt{6}$,
在△AFC1中,$cos∠FA{C}_{1}=\frac{A{F}^{2}+A{{C}_{1}}^{2}-{C}_{1}{F}^{2}}{2AF•A{C}_{1}}$=$\frac{{1}^{2}+(\sqrt{3})^{2}-(\sqrt{6})^{2}}{2\sqrt{3}}$=$-\frac{\sqrt{3}}{3}$.
∴A1B与AC1所成角的余弦值为$\frac{\sqrt{3}}{3}$.
故答案为:$\frac{\sqrt{3}}{3}$.

点评 本题考查异面直线及其所成的角,考查学生的空间想象能力和思维能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.等比数列{an}中,a1+a4=133,a2+a3=70,则这数列的公比为$\frac{2}{5}$或$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某市规定,高中学生三年在校期间参加不少于80小时的社区服务才合格.教育部门在全市随机抽取200位学生参加社区服务的数据,按时间段[75,80),[80,85),[85,90),[90,95),[95,100](单位:小时)进行统计,其频率分布直方图如图所示.
(1)求抽取的200位学生中,参加社区服务时间不少于90小时的学生人数,并估计从全市高中学生中任意选取一人,其参加社区服务时间不少于90小时的概率;
(2)从全市高中学生(人数很多)中任意选取3位学生,记ξ为3位学生中参加社区服务时间不少于90小时的人数.试求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.U=R,A={x|x2-5x-6<0},B={x||x-2|≥1}.求:
①A∩B
②A∪B
③(∁UA)∩(∁UB)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=4x+a•4-x是偶函数.
(1)求a的值;
(2)证明:对任意实数x1和x2都有$\frac{1}{2}$[f(x1)+f(x2)]≥f($\frac{{x}_{1}+{x}_{2}}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.( 1+i)10的展开式中,系数最大的项是(  )
A.第5项B.第6项C.第7项D.第5项或第6项

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若抛物线y2=2px(p>0)上的一点A(6,y)到焦点F的距离为10,则p的值是8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.“f′(a)=O”是“a是可导函数f(x)的极值点”的(  )
A.充分不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知幂函数y=(m2-3m+3)x${\;}^{{m}^{2}+m-2}$的图象不过坐标原点,则m的值是1.

查看答案和解析>>

同步练习册答案