精英家教网 > 高中数学 > 题目详情
6.已知$\lim_{n→∞}{a_n}$=3,$\lim_{n→∞}{b_n}=\frac{1}{3}$,则$\lim_{n→∞}\frac{{{a_n}-3{b_n}}}{{2{a_n}}}$=$\frac{1}{3}$.

分析 利用数列极限的运算法则即可得出.

解答 解:∵$\lim_{n→∞}{a_n}$=3,$\lim_{n→∞}{b_n}=\frac{1}{3}$,
则$\lim_{n→∞}\frac{{{a_n}-3{b_n}}}{{2{a_n}}}$=$\underset{lim}{n→∞}(\frac{1}{2}-\frac{3{b}_{n}}{2{a}_{n}})$=$\frac{1}{2}-\frac{3×\frac{1}{3}}{2×3}$=$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.

点评 本题考查了数列极限的运算法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知椭圆过(0,2)与(1,0)两点,直线l与其交于A(x1,y1),B(x2,y2)两点,若向量$\overrightarrow{m}$=(2x1,y1),$\overrightarrow{n}$=(2x2,y2),且$\overrightarrow{m}$⊥$\overrightarrow{n}$,O为坐标原点.
(1)若直线l过椭圆的焦点F(0,c)(c为半焦距),求直线l的斜率k的值;
(2)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设等差数列|an|的前n项和为Sn,且a2+a4=12,则S5=30.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.记集合T={0,1,2,3,4,5,6},M=$\{\frac{a_1}{7}+\frac{a_2}{7^2}+\frac{a_3}{7^3}+\frac{a_4}{7^4}|{a_i}∈T,i=1,2,3,4\}$,将M中的元素按从大到小的顺序排成数列{bi},并将bi按如下规则标在平面直角坐标系的格点(横、纵坐标均为整数的点)处:点(1,0)处标b1,点(1,-1)处标b2,点(0,-1)处标b3,点(-1,-1)处标b4,点(-1,0)标b5,点(-1,1)处标b6,点(0,1)处标b7,…,以此类推.
(Ⅰ)标b50处的格点坐标为(4,2);
(Ⅱ) b50=$\frac{6}{7}+\frac{5}{7^2}+\frac{6}{7^3}+\frac{6}{7^4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=x3与y=${(\frac{1}{2})^{x-2}}$图形的交点为(a,b),则a所在区间是(  )
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若行列式$|{\begin{array}{l}5&1&π\\{sin({π+x})}&0&{\sqrt{2}}\\{cos({\frac{π}{4}+x})}&2&1\end{array}}|$的第1行第2列的元素1的代数余子式为-1,则实数x的取值集合为{x|x=π+2kπ,k∈Z}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知实数-1,x,y,z,-4成等比数列,则xyz=(  )
A.-8B.±8C.$-2\sqrt{2}$D.$±2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设公比为q的等比数列{an}中,an>0,且a1,$\frac{1}{2}$a3,2a2成等差数列,则q=(  )
A.1+$\sqrt{2}$B.1-$\sqrt{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在平面直角坐标系中xOy中,圆C的方程为x2+y2-4y+3=0,若直线x-ty+2=0上至多存在一点使得以该点为圆心,1为半径的圆与圆C相切,则t的范围为(  )
A.(-∞,0)B.(-∞,0]C.(0,+∞)D.[0,+∞)

查看答案和解析>>

同步练习册答案