| A. | 90° | B. | 60° | C. | 45° | D. | 30° |
分析 取CD 中点F,由二面角定义知∠PFE是二面角P-CD-E的平面角,由此能求出二面角P-CD-E的大小.
解答 解:如图,设正方形ABCD边长为2a,![]()
则PC=PD=2a,DE=CE=$\sqrt{4{a}^{2}+{a}^{2}}$=$\sqrt{5}$a,
取CD 中点F,
由二面角定义知∠PFE是二面角P-CD-E的平面角,
∵PE=AE=a,EF=AD=2a,PF=$\sqrt{3}a$,
∴PE2+PF2=EF2,
∴PE⊥PF,
∴sin∠PFE=$\frac{a}{2a}=\frac{1}{2}$,
∴∠PFE=30°,
∴二面角P-CD-E的大小为30°.
故选:D.
点评 本题考查二面角的平面角的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{1}{4}$,$\frac{1}{2}}$) | B. | ($\frac{1}{4}$,$\frac{1}{2}$) | C. | [$\frac{1}{2}$,1) | D. | ($\frac{1}{2}$,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 当a≥$\frac{1}{2}$时,函数y=f(x)有零点 | B. | 若函数y=f(x)有零点,则a≥$\frac{1}{2}$ | ||
| C. | 存在a<0,使函数y=f(x)有唯一零点 | D. | 若函数y=f(x)有唯一零点,则a≤1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com