精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=x2-2ax-2alnx(a∈R),则下列说法错误的是(  )
A.当a≥$\frac{1}{2}$时,函数y=f(x)有零点B.若函数y=f(x)有零点,则a≥$\frac{1}{2}$
C.存在a<0,使函数y=f(x)有唯一零点D.若函数y=f(x)有唯一零点,则a≤1

分析 先将方程f(x)=0进行参变量分离,得到2a=$\frac{{x}^{2}}{x+lnx}$,令g(x)=$\frac{{x}^{2}}{x+lnx}$,转化成y=2a与y=g(x)的图象的交点个数,利用导数得到函数的单调性,结合函数的图象可得A,C,D都正确,B错误.

解答 解:令f(x)=x2-2ax-2alnx=0,则2a(x+lnx)=x2
∴2a=$\frac{{x}^{2}}{x+lnx}$,令g(x)=$\frac{{x}^{2}}{x+lnx}$,
则g′(x)=$\frac{x(x-1+2lnx)}{(x+lnx)^{2}}$
令h(x)=x+lnx,通过作出两个函数y=lnx及y=-x的图象(如右图)
发现h(x)有唯一零点在(0,1)上,
设这个零点为x0,当x∈(0,x0)时,g′(x)<0,g(x)在(0,x0)上单调递减,x=x0是渐近线,
当x∈(x0,1)时,g′(x)<0,则g(x)在(x0,1)上单调递减,
当x∈(1,+∞)时g′(x)>0,g(x)在(1,+∞)单调递增,
∴g(1)=1,可以作出g(x)=$\frac{{x}^{2}}{x+lnx}$的大致图象,
结合图象可知,当a<0时,y=2a与y=g(x)的图象只有一个交点,则函数y=f(x)只有一个零点,故选项A正确;
若函数y=f(x)有零点,则a<0或a≥$\frac{1}{2}$,故选项A正确,B不正确,选项C正确;
若函数y=f(x)有唯一零点,则a≤1,故选项D正确.
故选:B.

点评 本题考查了函数的零点与方程根的关系.函数的零点等价于对应方程的根,等价于函数的图象与x轴交点的横坐标,解题时要注意根据题意合理的选择转化.常运用数形结合的数学思想方法.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.判断条件“p:A?B”是结论“q:A∪B=B”的什么条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知ABCD是正方形,E是AB的中点,将△DAE和△CBE分别沿DE和CE折起,使AE与BE重合,A、B两点重合后记为P,那么二面角P-CD-E的大小为(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2=$\frac{6}{1+si{n}^{2}θ}$.
(Ⅰ)将曲线C的极坐标方程化为直角坐标方程;
(Ⅱ)若直线l:ρsinθ-ρcosθ+1=0与曲线C交于不同的两点M,N,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在长方体ABCD-A1B1C1D1中,∠BAB1=30°,AA1=1,则点A到平面BCC1B1的距离为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设a、b、c、d是4个整致,且使得m=(ab+cd)2-$\frac{1}{4}$(a2+b2-c2-d22是个非零整数,求证:|m|一定是个合数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆C1的方程为x2+y2-4x+2my+2m2-2m+1=0.
(1)求当圆的面积最大时圆C1的标准方程;
(2)求(1)中求得的圆C1关于直线l:x-y+1=0对称的圆C2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某中学高一年级进行学生性别与科目偏向问卷调查,共收回56份问卷,下面是2×2列联表:
男生女生合计
偏理科281644
偏文科4812
合计322456
(1)有多大把握认为科目偏向与性别有关?
(2)如果按分层抽样的方法选取14人,又在这14人中选取2人进行面对面交流,求选中的2人恰好都偏文科的概率;
(3)在(2)的条件下,求一次选出的2人中男生人数X的分布列及期望.
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({a+d})({a+c})({b+d})}}$
P(K2>k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=|x+1|+m|x-1|.
(Ⅰ)当m=2时,求不等式f(x)<4的解集;
(Ⅱ)若m<0,f(x)≥2m,求m的最小值.

查看答案和解析>>

同步练习册答案