精英家教网 > 高中数学 > 题目详情
8.化简:
sin($\frac{π}{4}$-3x)cos($\frac{π}{3}$-3x)-cos($\frac{π}{6}$+3x)sin($\frac{π}{4}$+3x)

分析 由条件利用诱导公式、两角和的正弦公式化简所给的式子,可得结果.

解答 解:sin($\frac{π}{4}$-3x)cos($\frac{π}{3}$-3x)-cos($\frac{π}{6}$+3x)sin($\frac{π}{4}$+3x)
=sin($\frac{π}{4}$-3x)cos($\frac{π}{3}$-3x)-sin($\frac{π}{3}$-3x)cos($\frac{π}{4}$-3x)
=sin[($\frac{π}{4}$-3x)-($\frac{π}{3}$-3x)]=sin(-$\frac{π}{12}$)
=-sin$\frac{π}{12}$.

点评 本题主要考查诱导公式、两角和的正弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知a=${log}_{2}\frac{1}{3}$,b=lg5,c=ln$\sqrt{e}$,则a、b、c的大小关系为(  )
A.<b<aB.c<a<bC.a<c<bD.a<b<c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=|x-2|-|x+1|.
(Ⅰ)若f(x)≤a恒成立,求a的取值范围;
(Ⅱ)解不等式f(x)≥x2-2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数y=f(x2-2x+4)的定义域(-2,2),求f(x2-2x-12)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线l1与l2:x+y-1=0平行,且l1与l2的距离为$\sqrt{2}$,求l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知动点P(x,y)满足$\left\{\begin{array}{l}{2x+y≤2}\\{x≥0}\\{(x+\sqrt{{x}^{2}+1})(y+\sqrt{{y}^{2}+1})≥1}\end{array}\right.$,则x2+y2+2y的最小值为0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,在等腰直角三角形ABD中,∠BAD=90°,且等腰直角三角形ABD与等边三角形CBD所在平面垂直,E为BC的中点,则AE与平面BCD所成角的大小为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若关于x的方程x3-3x+m=0在[0,2]上有根,则实数m的取值范围[-2,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设数列{an}的前n项和为Sn,且2Sn=(n+2)an-1(n∈N*).
(1)求a1的值,并用an-1表示an
(2)求数列{an}的通项公式;
(3)设Tn=$\frac{1}{{a}_{1}{a}_{3}}$+$\frac{1}{{a}_{2}{a}_{4}}$+$\frac{1}{{a}_{3}{a}_{5}}$+…+$\frac{1}{{a}_{n}{a}_{n+2}}$,求证:Tn<$\frac{5}{3}$.

查看答案和解析>>

同步练习册答案