精英家教网 > 高中数学 > 题目详情
3.如图,在等腰直角三角形ABD中,∠BAD=90°,且等腰直角三角形ABD与等边三角形CBD所在平面垂直,E为BC的中点,则AE与平面BCD所成角的大小为45°.

分析 取BD中点F,连AF,EF,CF,由已知中,∠BAD=90°的等腰直角三角形ABD与正三角形CBD所在平面互相垂直,E是BC的中点,结合等腰三角形性质,等边三角形性质,及面面垂直的性质,我们可得∠AEF即为AE与平面BCD所成角,解三角形AEF即可求出AE与平面BCD所成角的大小.

解答 解:取BD中点F,连AF,EF,CF,设BD=1,
则BE=$\frac{1}{2}$,EF=$\frac{1}{2}$,AB=AD=$\frac{\sqrt{2}}{2}$,AF=$\frac{1}{2}$,
由平面ABD⊥平面CBD,AF⊥BD
∴AF⊥平面BCD,
则∠AEF即为AE与平面BCD所成角
在Rt△AEF中,直角边AF=EF
∴∠AEF=45°
即AE与平面BCD所成角的大小为 45°
故答案为:45°.

点评 本题考查的知识点是直线与平面所成的角,其中判断出∠AEF即为AE与平面BCD所成角,将线面夹角问题转化为解三角形问题是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.如图,在△ABC中,$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AC}$,$\overrightarrow{BP}$=$\frac{1}{3}$$\overrightarrow{BD}$,若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,则$\frac{λ}{μ}$的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知3a+4b=7(a、b>0),则$\frac{3}{a}$+$\frac{4}{b}$的最小值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.化简:
sin($\frac{π}{4}$-3x)cos($\frac{π}{3}$-3x)-cos($\frac{π}{6}$+3x)sin($\frac{π}{4}$+3x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.命题p:函数y=x+$\frac{2}{x}$在[1,4]上的值域为[3,$\frac{9}{2}$],命题q:${log}_{\frac{1}{2}}$(a+1)>${log}_{\frac{1}{2}}$a(a>0),下列命题中,真命题的是(  )
A.p∧qB.p∨qC.p∧(¬q)D.p∨(¬q)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.正项数列{an}中,a1=4,an2=2(an+1)an-1-an(n≥2),则log2a1+log2a2+…+log2a100=5150.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若方程aex-x=0有两个不相等的实根,则a的取值范围为(  )
A.(-∞,$\frac{1}{e}$)B.(0,$\frac{1}{e}$)C.($\frac{1}{e}$,+∞)D.(-∞,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图1,已知点E、F、G分别是棱长为a的正方体ABCD-A1 B1ClD1的棱AA1、BB1、DD1的中点,点M、N、P、Q分别在线段AG、CF、BE、C1D1上运动,当以M、N、P、Q为顶点的三棱锥Q-PMN的俯视图是如图2所示的正方形时,则点P到QMN的距离为$\frac{\sqrt{3}}{3}$a.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.a1,a2,a3,a4是各项不为零的等差数列,且公差d≠0,若将此数列删去a2,得到的数列a1,a3,a4是等比数列,则$\frac{a_1}{d}$的值为(  )
A.1B.-4C.-1D.4

查看答案和解析>>

同步练习册答案