精英家教网 > 高中数学 > 题目详情
13.a1,a2,a3,a4是各项不为零的等差数列,且公差d≠0,若将此数列删去a2,得到的数列a1,a3,a4是等比数列,则$\frac{a_1}{d}$的值为(  )
A.1B.-4C.-1D.4

分析 利用等比中项的性质,得a32=a1•a4,进而求得a1和d的关系,即可得出结论.

解答 解:若a1、a3、a4成等比数列,则a32=a1•a4
∴(a1+2d)2=a1(a1+3d)
∴a12+4a1d+4d2=a12+3a1d
∴4d2=-a1d
∵d≠0
∴4d=-a1
则$\frac{a_1}{d}$=-4
故选:B.

点评 本题主要考查了等差数列和等比数列的性质.考查了等差数列通项公式和等比中项的性质的灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.如图,在等腰直角三角形ABD中,∠BAD=90°,且等腰直角三角形ABD与等边三角形CBD所在平面垂直,E为BC的中点,则AE与平面BCD所成角的大小为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,内角A,B,C的所对边分别是a,b,c,有如下下列命题:
①若A>B>C,则sinA>sinB>sinC;
②若$\frac{cosA}{a}=\frac{cosB}{b}=\frac{cosC}{c}$,则△ABC为等边三角形;
③若sin2A=sin2B,则△ABC为等腰三角形;
④若(1+tanA)(1+tanB)=2,则△ABC为钝角三角形;
⑤存在A,B,C,使得tanAtanBtanC<tanA+tanB+tanC成立.
其中正确的命题为①②④(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设数列{an}的前n项和为Sn,且2Sn=(n+2)an-1(n∈N*).
(1)求a1的值,并用an-1表示an
(2)求数列{an}的通项公式;
(3)设Tn=$\frac{1}{{a}_{1}{a}_{3}}$+$\frac{1}{{a}_{2}{a}_{4}}$+$\frac{1}{{a}_{3}{a}_{5}}$+…+$\frac{1}{{a}_{n}{a}_{n+2}}$,求证:Tn<$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平行四边形ABCD中,E,G分别是BC,DC上的点且$\overrightarrow{BC}$=3$\overrightarrow{BE}$,$\overrightarrow{CD}$=3$\overrightarrow{CG}$,DE与BG交于点O.
(1)求|$\overrightarrow{OE}$|:|$\overrightarrow{DE}$|;
(2)若平行四边形ABCD的面积为21,求△BOC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某手机销售商对某市市民进行手机品牌认可度的调查,在已购买某品牌手机的500名市民中,随机抽样100名,按年龄进行统计的频率分布表和频率分布直方图如下:
分组(岁)频数频率
[20,25)50.05
[25,30)200.2
[30,35)0.35
[35,40)300.3
[40,45)10
合计1001.0
(1)频率分布表中①②应填什么数?补全频率分布直方图,并根据频率分布直方图估计这500名市民的平均年龄;
(2)在抽出的这100市民中,按分层抽样抽取20人参加宣传活动,从20人中随机选取2人各赠送一部手机,设这两名市民中年龄低于30岁的人数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.7个人排成一列,其中3人顺序固定的排法有(  )
A.840种B.5040种C.140种D.1680种

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数{an}的前n项和Sn=n2-n+1,n∈N*
(1)求数列{an}的通项公式;
(2)数列{bn}的第n项bn=$\frac{1}{2}$an+1,n∈N*,求Tn=$\frac{1}{{b}_{2}{b}_{3}}$+$\frac{1}{{b}_{3}{b}_{4}}$+…+$\frac{1}{{b}_{n}{b}_{n+1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.用斜二测画法画出下列水平放置图形的直观图.

查看答案和解析>>

同步练习册答案