| 分组(岁) | 频数 | 频率 |
| [20,25) | 5 | 0.05 |
| [25,30) | 20 | 0.2 |
| [30,35) | ① | 0.35 |
| [35,40) | 30 | 0.3 |
| [40,45) | 10 | ② |
| 合计 | 100 | 1.0 |
分析 (1)利用频率分布表和频率分布直方图能求出频率分布表中的①②位置应填什么数,并补全频率分布直方图,再根据频率分布直方图能统计出这500名志愿者得平均年龄.
(2)由表知,抽取的20人中,年龄低于30岁的有5人,故X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列及数学期望.
解答 解:(1)由题意知频率分布表中的①位置应填数字为:100-5-20-30-10=35,![]()
②位置应填数字为:$\frac{30}{100}$=0.30.
补全频率分布直方图,如右图所示.
平均年龄估值为:$\frac{1}{2}$(45×0.05+55×0.2+65×0.35+75×0.3+85×0.1)=33.5(岁).
(2)由表知,抽取的20人中,年龄低于30岁的有5人,故X的可能取值为0,1,2,
P(X=0)=$\frac{{C}_{15}^{2}}{{C}_{20}^{2}}$=$\frac{21}{38}$,
P(X=1)=$\frac{{C}_{5}^{1}{C}_{15}^{1}}{{C}_{20}^{2}}$=$\frac{15}{38}$,
P(X=2)=$\frac{{C}_{5}^{2}}{{C}_{20}^{2}}$=$\frac{2}{38}$,
∴X的分布列为:
| X | 0 | 1 | 2 |
| P | $\frac{21}{38}$ | $\frac{15}{38}$ | $\frac{2}{38}$ |
点评 本题考查频率分布直方图的应用,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-3,1) | B. | (-1,$\frac{1}{3}$) | C. | (-∞,-1)∪($\frac{1}{3}$,+∞) | D. | (-∞,-$\frac{1}{3}$)∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -4 | C. | -1 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}$ | B. | $\frac{3}{8}$ | C. | $\frac{5}{8}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com