精英家教网 > 高中数学 > 题目详情
4.已知圆心为C的圆经过A(1,1)和B(2,-2),且圆心C在直线l:x-y+1=0上
(1)求圆心为C的圆的标准方程;
(2)线段PQ的端点P的坐标是(5,0),端点Q在圆C上运动,求线段PQ中点M的轨迹方程.

分析 (1)由A和B的坐标,求出直线AB的斜率,根据两直线垂直时斜率的乘积为-1求出线段AB垂直平分线的斜率,再由A和B的坐标,利用线段中点坐标公式求出线段AB的中点坐标,由中点坐标和求出的斜率,得出线段AB垂直平分线的方程,与直线l联立组成方程组,求出方程组的解集得到圆心C的坐标,再由C和A的坐标,利用两点间的距离公式求出|AC|的值,即为圆C的半径,由圆心和半径写出圆C的标准方程即可.
(2)设出Q和M的坐标,由中点坐标公式把Q的坐标用M的坐标表示,然后代入圆(x+3)2+(y+2)2=25即可得到答案.

解答 解:(1)∵A(1,1),B(2,-2),
∴kAB=$\frac{1-(-2)}{1-2}$=-3,
∴弦AB的垂直平分线的斜率为$\frac{1}{3}$,
又弦AB的中点坐标为($\frac{3}{2}$,-$\frac{1}{2}$),
∴弦AB的垂直平分线的方程为y+$\frac{1}{2}$=$\frac{1}{3}$(x-$\frac{3}{2}$),即x-3y-3=0,
与直线l:x-y+1=0联立,解得:x=-3,y=-2,
∴圆心C坐标为(-3,-2),
∴圆的半径r=|AC|=5,
则圆C的方程为(x+3)2+(y+2)2=25;
(2)设Q(x1,y1),线段PQ的中点M为(x,y).
则x1=2x-5,y1=2y①.
∵端点Q在圆(x+3)2+(y+2)2=25上运动,
∴(x1+3)2+(y1+2)2=25.
把①代入得:(2x-5+3)2+(2y+2)2=25.
∴线段APQ的中点M的轨迹方程是${({x-1})^2}+{({y+1})^2}=\frac{25}{4}$.

点评 此题考查了圆的一般方程,考查了与直线有关的动点轨迹方程,考查了代入法,涉及的知识有:两直线垂直时斜率满足的关系,垂径定理,两直线的交点坐标,线段中点坐标公式,以及两点间的距离公式,求出圆心坐标和半径是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.某校高三年级在某次模拟考试中,从全年级400名学生中选出40名学生的数学成绩制成了平率分布直方图如图所示.
(1若成绩在120分以上为优秀,试估计该校高三年级的优秀率;
(2)根据频率分布直方图估计该校高三年级的数学成绩的平均值;
(3)样本中数学成绩在[130,140)分的同学中男女生人数之比为2:1,现从成绩在[130,140)分的同学中选出2个研究他们的失分情况,求选出的人中至少1名女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某手机销售商对某市市民进行手机品牌认可度的调查,在已购买某品牌手机的500名市民中,随机抽样100名,按年龄进行统计的频率分布表和频率分布直方图如下:
分组(岁)频数频率
[20,25)50.05
[25,30)200.2
[30,35)0.35
[35,40)300.3
[40,45)10
合计1001.0
(1)频率分布表中①②应填什么数?补全频率分布直方图,并根据频率分布直方图估计这500名市民的平均年龄;
(2)在抽出的这100市民中,按分层抽样抽取20人参加宣传活动,从20人中随机选取2人各赠送一部手机,设这两名市民中年龄低于30岁的人数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知sin(α-$\frac{π}{5}$)=a(a≠±1,a≠0),求cos(α+$\frac{14π}{5}$)tan(α-$\frac{11π}{5}$)+$\frac{tan(α+\frac{9π}{5})}{cos(\frac{26π}{5}-α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数{an}的前n项和Sn=n2-n+1,n∈N*
(1)求数列{an}的通项公式;
(2)数列{bn}的第n项bn=$\frac{1}{2}$an+1,n∈N*,求Tn=$\frac{1}{{b}_{2}{b}_{3}}$+$\frac{1}{{b}_{3}{b}_{4}}$+…+$\frac{1}{{b}_{n}{b}_{n+1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f(x)=$\left\{\begin{array}{l}{lnx,1≤x≤3}\\{-2lnx,\frac{1}{3}≤x≤1}\end{array}\right.$,g(x)=f(x)-ax有三个不同零点,则实数a的取值范围是(  )
A.[$\frac{ln3}{3}$,$\frac{1}{e}$)B.[$\frac{ln3}{3}$,$\frac{1}{2e}$)C.(0,$\frac{1}{2e}$)D.(0,$\frac{1}{e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若关于x的方程2-|x|-x2+a=0有两个不相等的实数解,则实数a的取值范围是(  )
A.(-1,+∞)B.[-1,+∞)C.(-∞,-1)D.(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.经研究:经过抛物线的焦点弦的两个端点的切线的交点一定在抛物线的准线上:现用实例证明这个结论,已知抛物线f(x)=$\frac{{x}^{2}}{8}$的焦点弦AB,分别过点A,B作抛物线的切线,两切线交点N
(1)证明:点N的纵坐标是一个定值t;
(2)已知g(x)=8f(x)-(a-t)x+alnx,讨论g(x)的单调性
(3)若不等式g(x)=2f(x)+(2+t)x-alnx≥0(a>0)恒成立,求证:$\frac{ln{2}^{2}}{{2}^{2}}+\frac{ln{3}^{2}}{{3}^{2}}+\frac{ln{4}^{2}}{{4}^{2}}+…+\frac{ln{n}^{2}}{{n}^{2}}≤\frac{n-1}{e}$(其中e是自然对数的底数,n≥2,n∈N)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,已知四棱柱ABD-A1B1C1D1的底面ABCD是直角梯形,AB∥CD,AD⊥CD,侧棱AA1⊥底面ABCD,E是CD的中点,CD=2AB=2AD,AD=1,AA1=$\sqrt{2}$.
(Ⅰ)求证:EA1⊥平面BDC1
(Ⅱ)求二面角D-BC1-D1的余弦值.

查看答案和解析>>

同步练习册答案