精英家教网 > 高中数学 > 题目详情
17.某校高三年级在某次模拟考试中,从全年级400名学生中选出40名学生的数学成绩制成了平率分布直方图如图所示.
(1若成绩在120分以上为优秀,试估计该校高三年级的优秀率;
(2)根据频率分布直方图估计该校高三年级的数学成绩的平均值;
(3)样本中数学成绩在[130,140)分的同学中男女生人数之比为2:1,现从成绩在[130,140)分的同学中选出2个研究他们的失分情况,求选出的人中至少1名女生的概率.

分析 (1)通过频率分布直方图直接计算即可;
(2)直接计算平均值即可;
(3)通过频率分布直方图计算出男生4人,女生2人,利用列举法列出从6名学生中任取2名的所有情况,再找出满足条件的情况即可.

解答 解:(1)∵成绩在120分以上(含120分)为优秀,
∴高三年级数学成绩的优秀率为10×(0.025+0.015)=40%,
∴该校高三年级的优秀率为40%;
(2)平均成绩为x=0.05×95+0.2×105+0.35×115+0.25×125+0.15×135=117.5;
(3)数学成绩在[130,140)分的同学的人数为0.015×10×40=6,
∵男女生人数之比为2:1,∴男生4人,女生2人,
女生2人即为A、B,男生4人即为c、d、e、f,
则从6名学生中任取2名的所有情况有15种,具体如下:
(A、B),(A、c),(A、d),(A、e),(A、f),
(B、c),(B、d),(B、e),(B、f),(c、d),
(c、e),(c、f),(d、e),(d、f),(e、f),
其至少1名女生的情况有(A、B),(A、c),(A、d),(A、e),(A、f),
(B、c),(B、d),(B、e),(B、f)共9种情况,
故上述6人中选2人,至少一名女生的概率为P=$\frac{9}{15}$=$\frac{3}{5}$.

点评 本题考查频率分布直方图,考查列举法,考查概率的求法,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.图中的三个直角三角形是一个体积为30cm3的几何体的三视图,则侧视图中的h=6cm.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.正项数列{an}中,a1=4,an2=2(an+1)an-1-an(n≥2),则log2a1+log2a2+…+log2a100=5150.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,直角梯形CDEM中,CD∥EM,ED⊥CD,B是EM上一点,且CD=BM=$\sqrt{2}$CM=2,EB=ED=1,沿BC把△MBC折起得到△ABC,使平面ABC⊥平面BCDE.
(Ⅰ)证明:平面EAD⊥平面ACD.
(Ⅱ)求二面角E-AD-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图1,已知点E、F、G分别是棱长为a的正方体ABCD-A1 B1ClD1的棱AA1、BB1、DD1的中点,点M、N、P、Q分别在线段AG、CF、BE、C1D1上运动,当以M、N、P、Q为顶点的三棱锥Q-PMN的俯视图是如图2所示的正方形时,则点P到QMN的距离为$\frac{\sqrt{3}}{3}$a.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.射击比赛每人射2次,约定全部不中得0分,只中一弹得10分,中两弹得15分,某人每次射击的命中率均为$\frac{4}{5}$,则他得分的数学期望是12.8分.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{a•{2}^{x}+1}{{2}^{x}-a}$(a为常数)
(1)证明:a=1是函数f(x)为奇函数的充分不必要条件;
(2)如果存在x0∈R,使得f(x0)=1,求a的取值范围;
(3)若f(x)在[0,1]上是单调递减函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知定义在R上的偶函数f(x)满足,当x≥0时,f(x)=x3+x2,则不等式f(x-1)>f(2x)的解集为(  )
A.(-3,1)B.(-1,$\frac{1}{3}$)C.(-∞,-1)∪($\frac{1}{3}$,+∞)D.(-∞,-$\frac{1}{3}$)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆心为C的圆经过A(1,1)和B(2,-2),且圆心C在直线l:x-y+1=0上
(1)求圆心为C的圆的标准方程;
(2)线段PQ的端点P的坐标是(5,0),端点Q在圆C上运动,求线段PQ中点M的轨迹方程.

查看答案和解析>>

同步练习册答案